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ABSTRACT 

In today's rapidly advancing technological landscape, accurately detecting and tracking objects 

from multiple viewpoints is crucial in surveillance, autonomous navigation, augmented reality, 

and robotics. Traditional multiview object detection and tracking methods often struggle with 

challenges like occlusions, varying viewpoints, and complex scene dynamics. These 

challenges necessitate the development of more robust and efficient methodologies. Deep 

learning, a subset of artificial intelligence, has emerged as a powerful tool to address these 

issues, offering exceptional capabilities in learning complex patterns and representations 

directly from data. This study begins by reviewing the existing literature on multiview object 

detection and tracking, highlighting the limitations of traditional methods. It then explores 

deep learning techniques and their applications to multiview data fusion for object detection 

and tracking tasks. The research is structured into three main parts.  

Firstly, it investigates data augmentation techniques using state-of-the-art deep learning 

models, such as Faster Region-based Convolutional Neural Network (Faster RCNN), Single 

Shot Detector (SSD), CenterNet, and EfficientDet. Focusing on the Open Image Dataset, the 

method applies data augmentation strategies to enhance training data and improve detection 

performance for three vehicle classes – cars, buses, and bicycles. The effectiveness of various 

augmentation techniques and detection models are analyzed through rigorous experimentation 

and evaluation. 

Secondly, the thesis investigates hybridizing two object detection and tracking methods in a 

multiview environment. In this method, a combination of a popular deep learning object 

detection model You Only Look Once (YOLO) and the Simple Online and real-time tracking 

with a Deep Association Metric (DeepSORT) tracking algorithm, which examines object 

detection and tracking across multiple cameras. The proposed technique was tested on the 

EPFL Multi-view Multi-class Detection dataset. Extensive experiments evaluate the proposed 

approach's performance in scenarios involving multiple object classes and varying viewpoints. 

The third proposed method explores the use of a combination of YOLO and ByteTrack (a 

multiobject tracking algorithm) for tracking pedestrians in a multi-camera environment.This 

approach was tested on the EPFL multi-camera pedestrian video dataset. The research aims to 

develop robust techniques that effectively monitor objects across several camera views in 

challenging conditions, including poor lighting, different viewpoints, and occlusions. 
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Overall, this research advances the investigation and development of novel deep-learning 

techniques for multiview object detection and tracking. It contributes insights and practical 

solutions for surveillance, transportation, and security applications, focusing on data 

augmentation for improved detection accuracy and multi-camera systems for robust object 

monitoring and tracking. 
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CHAPTER – 1 

Introduction 

1.1 Introduction to Object Detection and Tracking  

Object detection and tracking are transformative technologies that enable machines to 

recognize, locate, and follow objects within visual data, opening powerful new capabilities 

across numerous fields. These technologies, from autonomous vehicles and drones to smart 

surveillance systems and healthcare robots, provide critical situation awareness by identifying 

and tracking objects in real time. By analyzing video frames or live feeds, systems can not 

only detect objects like people, vehicles, or specific items but also monitor their movements 

over time, supporting dynamic, interactive, and responsive applications. This ability to 

interpret and respond to visual data with precision is fueling innovation in safety, automation, 

and human-robot interaction, driving the next generation of intelligent systems. 

Object detection involves identifying and localizing objects within an image or video 

frame, while object tracking entails following the movement of objects over time across 

consecutive frames. Traditional approaches to object detection relied on handcrafted features 

and machine learning classifiers. However, recent advancements in deep learning have 

revolutionized object detection by enabling end-to-end learning of feature representations 

directly from data. Deep learning-based object detection methods typically utilize 

convolutional neural networks (CNNs) to extract hierarchical features from input images and 

employ region proposal algorithms, such as R-CNN [4], Fast R-CNN [5], and Faster R-CNN 

[6], to generate candidate object bounding boxes. These bounding boxes are then refined and 

classified into different object categories using region-based or anchor-based classification 

techniques. One of the significant breakthroughs in object detection is the introduction of 

single-stage detectors, such as – you only look once (YOLO) [10] and single shot detector 

(SSD) [7], which can simultaneously predict object bounding boxes and class probabilities in a 

single pass through the network. These models offer real-time performance and are well-suited 

for applications requiring low latency. 
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Object tracking involves following the spatial and temporal trajectory of objects across 

consecutive frames in a video sequence. The primary goal of object tracking is to maintain 

consistent identities for objects over time, even in the presence of occlusions, motion blur, and 

changes in appearance. Traditional object tracking methods often relied on handcrafted 

features and motion models to estimate the state of objects and associate them between 

frames. However, deep learning has also made significant strides in improving object tracking 

accuracy and robustness. 

Deep learning-based object tracking methods typically formulate object tracking as a 

regression or classification problem and use recurrent neural networks (RNNs) or 

convolutional neural networks (CNNs) to predict the position or motion of objects in 

subsequent frames. Reinforcement learning techniques, such as deep reinforcement learning 

(DRL), have also been applied to learn optimal tracking policies directly from data. Hybrid 

approaches that combine the strengths of traditional and deep learning-based methods have 

shown promising results in object tracking. These approaches leverage the complementary 

capabilities of handcrafted features and deep feature representations to achieve robust and 

accurate tracking performance across various scenarios. 

1.2 Need for Multiview Object Detection and Tracking 

Single-view systems face significant limitations in object detection and tracking, primarily due 

to their restricted field of vision and lack of depth perception. Since they capture scenes from 

only one angle, these systems struggle with occlusions—if an object is blocked by another, it 

may go undetected or be lost during tracking. Additionally, single-view systems cannot 

accurately determine depth, making it difficult to gauge an object’s distance or spatial 

positioning, which is critical in applications like autonomous navigation and 3D modeling. 

Their limited perspective also affects their ability to handle crowded or complex 

environments, where objects might overlap or appear similar. Moreover, single-view systems 

are more susceptible to environmental variations, such as changes in lighting or shadows, as 

they lack alternative viewpoints to verify and adjust for these inconsistencies. 

Multiview object detection and tracking involve the simultaneous analysis of data from 

multiple cameras or viewpoints to identify and track objects within a scene accurately. The 
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need for multiview object detection and tracking arises from the inherent limitations of single-

view systems and the increasing demands for more comprehensive and accurate scene 

understanding in various applications. Multi-view systems help overcome many of the 

limitations of single-view systems and offers the following advantages: 

With multiple viewpoints, multi-view systems can continue tracking objects even if they 

are obscured from one camera’s perspective, providing more consistent tracking. Multi-view 

systems can more accurately estimate depth and spatial positioning, which is especially 

valuable for applications requiring precise location data, like robotics or autonomous vehicles. 

Multiview systems provide coverage from multiple viewpoints, enhancing the overall 

visibility of the scene and reducing blind spots. By integrating information from different 

views, multiview object detection and tracking systems can compensate for occlusions, 

shadows, and other factors that may hinder visibility in a single view. Multiview systems 

provide richer contextual information about the scene by capturing object interactions, scene 

dynamics, and spatial relationships from multiple perspectives. This holistic view enables 

more comprehensive scene understanding and facilitates higher-level reasoning tasks, such as 

activity recognition, scene understanding, and behaviour analysis. Multiview object detection 

and tracking increase system robustness by providing redundancy and resilience to failures or 

occlusions in individual camera views. By aggregating information from multiple sources, 

these systems can mitigate the effects of noise, sensor errors, and environmental variability, 

leading to more reliable object detection and tracking performance. 

Multiview object detection and tracking enable accurate 3D localization and 

reconstruction of objects within a scene. By triangulating information from multiple camera 

views, these systems can estimate the spatial positions and dimensions of objects in three-

dimensional space, facilitating applications such as augmented reality, autonomous navigation, 

and 3D scene modelling. Multiview object detection and tracking are crucial for surveillance 

and security applications, where comprehensive monitoring and accurate tracking of objects 

are essential for threat detection, anomaly detection, and situational awareness. By integrating 

information from multiple cameras, these systems can provide comprehensive coverage of 

large areas and improve the effectiveness of surveillance operations. Multiview object 

detection and tracking play a vital role in advancing autonomous systems, including 
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autonomous vehicles, drones, and robots. By integrating information from multiple sensors or 

camera views, these systems can perceive and interpret the surrounding environment more 

accurately, enabling safer navigation, obstacle avoidance, and interaction with the 

environment. 

While single-view systems are simpler and more cost-effective, they struggle with 

occlusion, depth estimation, and spatial awareness, multi-view systems, though more complex, 

provide superior robustness, accuracy, and continuity in object detection and tracking. They 

play a crucial role in advancing the capabilities of computer vision systems and addressing the 

diverse needs of various real-world applications. 

1.3 Open Research Challenges in Multiview Systems 

Research challenges in multi-view object detection and tracking encompass various technical 

and practical aspects that need to be addressed to advance the state-of-the-art in the field. 

• Scalability and efficiency: Addressing the computational complexity and scalability of 

multi-view object detection and tracking algorithms, especially in real-time applications. 

Developing efficient algorithms and optimization techniques to handle large volumes of 

data from multiple views while maintaining real-time performance is crucial. 

• Generalization and adaptation: Ensuring the robustness and generalization of multi-view 

object detection and tracking algorithms across diverse environments, lighting conditions, 

and object types. This involves developing techniques for domain adaptation, transfer 

learning, and robust feature representations to enhance algorithm adaptability. 

• Integration with other sensor modalities: Information from multiple sensor modalities, 

such as LiDAR, radar, and thermal sensors, with multi-view camera data to enhance object 

detection and tracking performance. Developing fusion techniques and sensor calibration 

methods to effectively combine data from heterogeneous sensors is crucial. 

• Data fusion and alignment: Developing robust methods for fusing information from 

multiple camera views while accounting for differences in viewpoint, resolution, and 

imaging characteristics. This includes accurate camera calibration, synchronization, and 

geometric alignment to ensure spatial and temporal coherence across views. 
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• Object association and occlusion handling: Designing effective algorithms for associating 

objects detected in different camera views and handling occlusions and interactions 

between objects. This involves resolving ambiguities in object correspondence and 

maintaining consistent object identities over time despite occlusions and scene dynamics. 

Addressing these challenges requires interdisciplinary collaboration between researchers 

from computer vision, machine learning, robotics, and other related fields. By tackling these 

challenges, we can advance the state-of-the-art in object detection and tracking and enable the 

development of more reliable, accurate, and efficient systems for various applications. 

1.4 Motivation of Work 

Single-view systems often struggle with accuracy due to limited perspectives, leading to 

incomplete or erroneous detections. Multiview systems can observe the same scene from 

different angles, significantly improving the accuracy and reliability of object detection and 

tracking. Objects in real-world scenarios frequently become partially or fully obscured, 

causing traditional single-view systems to miss detections or incorrectly track objects. 

Multiview approaches offer alternative viewpoints, enhancing the system's ability to maintain 

accurate tracking even when occlusions occur. Accurate depth perception is crucial for 

understanding the spatial relationships between objects, especially in applications like 

autonomous driving and robotics. Multiview setups provide the necessary parallax, resulting 

in more robust and precise depth estimation. 

The ability to scale and adapt to different environments is a significant advantage of 

multiview systems. By integrating additional cameras or viewpoints, these systems can be 

tailored to cover larger areas or more complex scenes, making them highly versatile for 

various applications. Recent advancements in deep learning, particularly in convolutional 

neural networks (CNNs) and transformers, have shown remarkable improvements in object 

detection and tracking performance. Applying these techniques to multiview systems can 

further enhance their capabilities, offering new solutions to longstanding challenges. The 

demand for reliable and accurate object detection and tracking systems is growing across 

numerous fields, including autonomous vehicles, surveillance, and robotics. Multiview 

systems powered by deep learning have the potential to meet these demands, providing safer 
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and more efficient solutions. While significant progress has been made in single-view object 

detection and tracking, multiview systems remain a relatively underexplored area with 

immense potential. This research aims to push the boundaries by exploring how deep learning 

techniques can effectively apply to multiview scenarios, opening new avenues for innovation 

and development. By addressing these motivations, the research seeks to contribute to 

advancing computer vision technology, offering practical solutions that enhance the 

performance and applicability of object detection and tracking systems in real-world scenarios. 

1.5 Definition of problem 

This research aims to design and develop advanced algorithms for multi-view object detection 

and tracking, focusing on enhancing both accuracy and efficiency. Specifically, the study seeks 

to create robust multi-view object detection algorithms capable of accurately identifying 

objects from various camera perspectives, regardless of variations in angle, position, or 

orientation. In parallel, the research emphasizes the development of efficient object-tracking 

algorithms designed to reliably maintain object identity across multiple views over time, even 

in complex and dynamic environments. 

A key objective of this work is the seamless integration of these detection and tracking 

components into a unified, real-time system. By leveraging state-of-the-art deep learning 

techniques, the research endeavors to optimize the performance of both the detection and 

tracking processes. This involves improving the accuracy of object recognition across diverse 

views and enhancing the reliability of tracking mechanisms to ensure consistent performance 

under real-world conditions. 

Ultimately, the study aspires to contribute to the advancement of multi-view object 

detection and tracking by delivering a cohesive framework that addresses existing challenges 

in this field. By focusing on both algorithmic innovation and practical implementation, this 

research has the potential to significantly improve real-time applications in areas such as 

surveillance, autonomous vehicles, and smart environments. 

1.6 Objectives of Research 

The primary objectives of the research are as follows: 
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• Design and develop deep learning-based algorithms for object detection and tracking in 

multiview environments for different environmental conditions. 

• Explore methodologies for improving robustness and model performance for multiview 

object detection tasks through data augmentation methods. 

• Investigate and utilize deep learning based advanced tracking algorithms to track objects 

as they move across multiple camera views. 

• Validate the proposed methods through multiview or multi-camera datasets. 

 

1.7 Scope 

The scope of the research encompasses several key aspects related to leveraging deep learning 

techniques for addressing the challenges of object detection and tracking across multiple 

camera views. The article will explore how deep neural networks, a core component of deep 

learning, are utilized for object detection and tracking in scenarios with multiple viewpoints. 

This refers to detecting objects in environments where multiple cameras capture the scene 

from different angles. The article will likely explore how deep learning can handle the 

complexities of combining information from these various viewpoints to improve detection 

accuracy, especially for small objects. After objects are detected in each view, the additional 

challenge is to track them across multiple frames or views. The article discusses deep learning 

methods for establishing consistent object identities despite variations in appearance due to 

different viewpoints or occlusions. 

1.8 Important Thesis Contributions 

The important contribution of the thesis is shown in Figure 1.1: 
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FIGURE 1.1 Major Contribution of Thesis 

• Multi-view object detection using image augmentation using deep learning models: This 

component investigates the application of advanced data augmentation techniques to 

enhance multi-view object detection. By employing state-of-the-art deep learning models 

such as Faster RCNN, SSD, CenterNet, and EfficientDet, the study aims to improve 

detection accuracy for various object categories. The Open Image dataset v6 [26] serves as 

the primary source of training data, enriched through augmentation strategies to better 

handle occlusions, viewpoint variations, and dynamic scenes.  

• Multi-camera object detection and tracking using YOLOv7 and DeepSORT: This segment 

focuses on multi-camera object detection and tracking, leveraging the YOLOv7 detection 

model alongside the DeepSORT tracking algorithm. The research utilizes the EPFL Multi-

view Multi-camera Object Detection dataset to evaluate the effectiveness of the proposed 

approach in handling multiple object classes across different camera viewpoints. The 

integration of YOLOv7 and DeepSORT aims to enhance tracking accuracy and robustness 

in complex environments. 

• Multi-camera object tracking using YOLOv8 and ByteTrack: This component explores the 

use of YOLOv8 and ByteTrack for tracking pedestrians in multi-camera setups. The study 

employs multiple datasets, including the person subset of the Open Image dataset v6, the 

CVLAB's Multi-camera Pedestrian dataset from EPFL, and a real-time multi-camera 
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person dataset with non-overlapping views. The goal is to develop robust tracking systems 

capable of effectively monitoring individuals across several camera views, even in 

challenging conditions such as poor lighting and occlusions. 

 

1.9 Organization of Thesis 

The structure of this thesis is organized into six chapters, each dedicated to a specific aspect of 

the research, facilitating a comprehensive understanding of the study. 

Chapter 1 provides an introduction to the research, laying the groundwork for the study. It 

explains the motivation behind investigating multi-view object detection and tracking, 

highlights the objectives and scope of the work, and presents an overview of the proposed 

research contributions. This chapter sets the stage by outlining the relevance and importance 

of the chosen topic. 

Chapter 2 is dedicated to a thorough review of the existing literature, offering a detailed 

analysis of both traditional methods and contemporary deep learning techniques employed in 

object detection and tracking. This chapter provides the necessary background and context for 

the research, identifying gaps in the existing body of knowledge that the thesis aims to 

address. 

Chapter 3 focuses on enhancing multi-view object detection. It explores the 

implementation of advanced image data augmentation techniques and the application of deep 

neural networks to improve detection accuracy and robustness. The methodologies and 

experimental results presented here contribute to the refinement of multi-view detection 

approaches. 

Chapter 4 shifts attention to multi-view, multi-camera object detection and tracking. It 

investigates the integration of deep learning methodologies to process and analyze data from 

multiple cameras, offering innovative solutions to challenges in this domain. 

Chapter 5 narrows the focus to multi-camera object tracking. It emphasizes the 

application of state-of-the-art deep learning techniques, including the ByteTrack algorithm, to 

achieve efficient and accurate tracking of objects across multiple camera views. 
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Finally, Chapter 6 concludes the thesis by summarizing the key findings of the research. It 

reflects on the contributions made to the field and identifies potential directions for future 

work, aiming to inspire continued advancements in multi-view object detection and tracking. 

 

 

 

 

 

 

 



CHAPTER – 2 

Literature Review 

This chapter reviews techniques employed in multi-view object detection and tracking. It 

serves as an introductory guide, outlining key concepts essential for understanding the thesis at 

hand. The examination of pertinent literature predominantly revolves around machine learning 

and deep learning principles. Ultimately, the chapter wraps up with insightful reflections 

derived from the extensive review of relevant literature. 

2.1 Object Detectors 

Object detection has seen significant advancements in recent years and is poised to play an 

increasingly vital role in future technological developments. The evolution of object detection 

began with the Viola-Jones detector [1][2], enabling real-time human face detection, followed 

by the adoption of Histogram of Oriented Gradient (HOG) detectors [3] for pedestrian 

detection. HOG detectors evolved into Deformable Part-based Models (DPMs), pioneering 

multiple object detection. The introduction of the regions with convolutional neural network 

(R-CNN) [4] model in 2014 marked a breakthrough in deep learning-based object detection, 

enhancing Mean Average Precision (mAP). Subsequent advancements in deep neural networks 

and GPU technology facilitated faster and more efficient real-time object detection. Figure 2.1 

depicts a taxonomy of modern deep learning-based object detectors. 

 

FIGURE 2.1 Object detection methods 
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Presently, an array of deep learning algorithms is employed for object detection, broadly 

categorized into one-stage and two-stage detectors [93]. Two-stage deep learning-based 

detectors propose regions and then classify objects. First, they generate Regions of Interest 

(ROIs) that are likely to contain objects, followed by ROI selection and object classification. 

Examples include RCNN [4], Fast R-CNN [5], and Faster R-CNN [6]. In contrast, one-stage 

detectors directly produce object bounding boxes without the intermediate step of region 

proposal. This characteristic renders these algorithms faster, less computationally intensive, 

and suitable for real-time applications. Widely used one-stage detectors include YOLO [10], 

SSD [7], EfficientNet [8], and CenterNet [9]. Figure 2.2 illustrates the distinction between 

these two detector types.  

 

 

FIGURE 2.2 Object detectors (a) Two-stage Detector (b) One-stage Detector 

A comparison of speed and accuracy metrics across multiple object detection models [56] 

on the MS COCO [32] dataset is depicted in the table, facilitating a detailed understanding of 

their relative performance. 
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TABLE 2.1 Evaluation of the performance and precision of various object detection 

models on the MS COCO test-dev 2017 dataset. 

Method Dataset Backbone Size AP AP50 AP75 

RetinaNet[13] MS COCO  ResNet-50  [33] 640 37.0% - - 

RetinaNet 

[13] 

MS COCO  
ResNet-101 [33] 640 37.9% - - 

YOLOv3 [16] MS COCO  Darknet-53 608 42.4% 63.0% 47.4% 

EfficientDet-

D0 [8] 

MS COCO  
Efficient-B0 [35] 512 3.8% 52.2% 42.1% 

EfficientDet-

D1 [8] 

MS COCO  
Efficient-B1 [35] 640 39.6% 58.6% 45.1% 

EfficientDet-

D2 [8] 

MS COCO  
Efficient-B2 [35] 768 43.0% 62.3% 47.4% 

EfficientDet-

D3 [8] 

MS COCO  
Efficient-B3 [35] 896 45.8% 65.0% 49.2% 

YOLOv4 [14] MS COCO  CSPDarknet-53 608 43.5% 65.7% 47.3% 

SSD [7]  MS COCO  Mobilenet [34] 640 - 29.1% - 

CenterNet [9] MS COCO  Resnet 101 [33] 512 - 34.2 - 

Faster RCNN 

[6] 

MS COCO  
Resnet 101 [33] 640 - 31.8 - 

 

2.1.1 RCNN 

RCNN , or region-based convolutional neural network, is a seminal deep learning-based object 

detection model. Introduced in 2014 by Girshick et al.[4], RCNN was a breakthrough in object 

detection, significantly advancing the state-of-the-art performance. RCNN generates region 

proposals, or candidate bounding boxes, using selective search or a similar method. These 

proposals are regions within the image that are likely to contain objects. Each region proposal 

is warped to a fixed size and passed through a pre-trained CNN, such as VGG [11], to extract a 

feature representation. The extracted features from each region proposal are then fed into a set 

of support vector machines (SVMs) [94] to classify the presence of objects and their 
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respective classes. This step determines whether the region proposal contains an object and, if 

so, which class it belongs to. Additionally, bounding box regression is applied to refine the 

location of the bounding boxes, adjusting their position and size to better fit the object within 

the proposal. Finally, non-maximum suppression is performed to eliminate redundant and 

overlapping bounding boxes, retaining only the most confident detections. 

While RCNN achieved impressive detection accuracy, its main drawback was its slow 

inference speed due to the need to process each region proposal individually through CNN. 

This led to the development of faster variants such as Fast R-CNN and Faster R-CNN, which 

improved upon the efficiency of the original RCNN model while maintaining its accuracy. 

2.1.2 Fast RCNN 

Fast R-CNN is an improvement over the original RCNN (Region-based Convolutional Neural 

Network) model, designed to address its computational inefficiency. Introduced by Ross 

Girshick in 2015 [5], Fast R-CNN offers faster inference speeds while maintaining high object 

detection accuracy. Instead of generating region proposals separately, as in RCNN, Fast R-

CNN shares the entire image's convolutional features to generate region proposals. This is 

typically achieved using an algorithm like selective search or edge boxes. The shared 

convolutional features of the input image are passed through a convolutional neural network 

(CNN) to generate a feature map. Fast R-CNN performs RoI pooling on the feature map for 

each region proposal to extract fixed-size feature vectors. This allows for consistent-sized 

feature representations regardless of the size or aspect ratio of the region proposals. The 

extracted RoI features are fed into two sibling fully connected layers: one for object 

classification and another for bounding box regression. The classification branch predicts the 

probability of object presence and its class, while the regression branch refines the bounding 

box coordinates. Fast R-CNN is trained end-to-end using a multi-task loss function that 

combines classification and bounding box regression losses.  

Fast R-CNN efficiently processes the entire image during inference to generate region 

proposals, extract features, and perform classification and bounding box regression in a single 

forward pass through the network. By sharing convolutional features and performing RoI 

pooling, Fast R-CNN significantly reduces computational overhead compared to RCNN. This 
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improvement in efficiency makes Fast R-CNN more practical for real-time object detection 

applications while achieving comparable or better accuracy. 

2.1.3 FASTER RCNN 

Faster R-CNN is a state-of-the-art deep learning-based object detection model introduced by 

Shaoqing Ren et al. in 2015 [6]. It builds upon the Faster R-CNN architecture, addressing the 

inefficiencies of its predecessor while maintaining high detection accuracy. Faster R-CNN 

introduces a Region Proposal Network (RPN) that shares convolutional features with the 

object detection network. The RPN generates region proposals (bounding boxes) directly from 

the feature map, eliminating the need for separate algorithms like selective search or edge 

boxes. 

The RPN operates by sliding a small network called an anchor box over the feature map. 

At each position, the anchor box predicts multiple bounding box proposals and their 

corresponding objectness scores (the likelihood of containing an object). These anchor boxes 

have predefined scales and aspect ratios, providing a diverse set of proposals. 

Like Fast R-CNN, Faster R-CNN performs RoI pooling to extract fixed-size feature maps 

for each region proposal from the shared convolutional features. The extracted RoI features 

are fed into separate branches for object classification and bounding box regression. The 

classification branch predicts the presence and class of objects within each region proposal, 

while the regression branch refines the bounding box coordinates. Faster R-CNN is trained 

end-to-end using a multi-task loss function, combining classification loss, regression loss, and 

a loss term for the RPN. Faster R-CNN efficiently generates region proposals during 

inference and performs object classification and bounding box regression in a single forward 

pass through the network.  

Faster R-CNN significantly improves upon the speed and efficiency of its predecessors by 

integrating the region proposal generation directly into the network architecture. This makes it 

one of the most widely used and effective object detection models, capable of achieving state-

of-the-art performance on various datasets and applications. 
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2.1.4 CENTERNET 

CenterNet is a recent state-of-the-art object detection architecture introduced by Zhou et al. in 

2019 [9]. Unlike traditional object detection models, which focus on predicting bounding 

boxes directly, CenterNet takes a different approach by directly regressing the center points of 

objects and their corresponding bounding box dimensions and object categories. CenterNet 

first detects the center points of objects within the input image. It employs a convolutional 

neural network to predict a heatmap where each peak corresponds to the center of an object. 

Once the center points are identified, CenterNet regresses the bounding box dimensions (width 

and height) and orientation (if applicable) around each detected center point. Simultaneously, 

CenterNet predicts the object category for each detected object center. CenterNet is trained 

using a combination of losses, including the heatmap loss (to ensure accurate center point 

detection), the regression loss (to refine bounding box dimensions), and the classification loss 

(to correctly classify object categories). During inference, CenterNet generates object 

detections by identifying peaks in the heatmap, regressing bounding box dimensions around 

these peaks, and assigning object categories. 

CenterNet has several advantages over traditional object detection models: CenterNet 

simplifies the object detection pipeline by directly predicting object centers instead of 

bounding boxes, reducing the complexity of the model. By focusing on detecting object 

centers and regressing bounding boxes around them, CenterNet achieves high accuracy in 

object detection tasks. CenterNet is computationally efficient compared to some other state-of-

the-art object detection architectures, making it suitable for real-time applications.  

Due to its effectiveness and efficiency, CenterNet has gained popularity in the computer 

vision community and has been applied to various object detection tasks, including pedestrian 

detection, vehicle detection, and instance segmentation.  

2.1.5 EFFICENTDET 

EfficientDet is a family of state-of-the-art object detection models introduced by Mingxing 

Tan et al. in 2019 [8]. It is built upon the EfficientNet [12] architecture, which focuses on 

optimizing both model accuracy and computational efficiency by using a compound scaling 
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method. EfficientDet employs the EfficientNet architecture as its backbone network. 

EfficientNet achieves a balance between model size and accuracy by scaling the depth, width, 

and resolution of the network in a principled manner. EfficientDet introduces a novel feature 

fusion module called BiFPN (Bidirectional Feature Pyramid Network). BiFPN efficiently 

integrates features from different scales and enhances information flow in both bottom-up and 

top-down directions. EfficientDet uses a lightweight object detection head to predict bounding 

boxes, object categories, and objectness scores. It consists of convolutional layers and a set of 

prediction heads for each output task. EfficientDet employs compound scaling to optimize 

both accuracy and efficiency. It scales the depth, width, and resolution of the network 

simultaneously, achieving better performance than simply scaling one aspect of the network. 

EfficientDet is trained using standard supervised learning techniques with labeled training 

data. It utilizes techniques like focal loss and smooth L1 loss to handle class imbalance and 

regression tasks efficiently. EfficientDet comes in different variants (EfficientDet-D0 to 

EfficientDet-D7), with varying model sizes and computational costs. Users can choose a 

model variant based on their specific requirements for accuracy and efficiency. 

EfficientDet has several advantages over previous object detection architectures: 

EfficientDet achieves state-of-the-art performance on various object detection benchmarks 

while maintaining high efficiency. It offers better computational efficiency compared to other 

models of similar accuracy, making it suitable for deployment on resource-constrained devices 

or real-time applications. EfficientDet provides a range of model variants with different trade-

offs between accuracy and efficiency, allowing users to choose the most suitable model for 

their specific needs. EfficientDet has become widely adopted in the computer vision 

community and has been applied to a wide range of tasks, including object detection, instance 

segmentation, and human pose estimation. 

2.1.6 YOLO 

YOLO, which stands for “You Only Look Once”, is a pioneering object detection system 

introduced by Joseph Redmon et al. [11] YOLO revolutionized object detection by offering 

real-time performance, achieving impressive speed and accuracy in detecting objects within 

images and video frames. 
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• Single forward pass: YOLO adopts a single-stage approach, processing the entire image in 

a single feedforward pass through the neural network. This contrasts with traditional two-

stage methods, which involve region proposal and classification separately. 

• Grid-based prediction: YOLO divides the input image into a grid of cells and predicts 

bounding boxes and class probabilities for each grid cell. Each grid cell is responsible for 

predicting objects whose centers fall within that cell. 

• Bounding box prediction: For each grid cell, YOLO predicts a fixed number of bounding 

boxes (anchors) along with their corresponding confidence scores and class probabilities. 

The bounding boxes are represented by their coordinates (x, y, width, height) relative to 

the grid cell. 

Object Confidence and Class Prediction: YOLO predicts a confidence score for each 

bounding box, indicating the likelihood that the box contains an object. Additionally, class 

probabilities are predicted for each bounding box, indicating the probability of the object 

belonging to different predefined classes.  After prediction, YOLO applies non-maximum 

suppression (NMS) to eliminate redundant bounding boxes with overlapping regions, retaining 

only the most confident detections for each object class. 

YOLO achieves high-speed object detection, making it suitable for real-time applications 

such as video surveillance, autonomous vehicles, and robotics. YOLO's single-stage 

architecture simplifies the object detection pipeline by combining object localization and 

classification into a single step. YOLO demonstrates strong generalization across different 

object categories and environments, making it versatile for various object detection tasks. 

Since its inception, YOLO has undergone several iterations, with subsequent versions 

(YOLOv3[16], YOLOv4[14], YOLOv5[18], YOLOv7[15] etc.) introducing improvements in 

speed, accuracy, and model efficiency. YOLO remains one of computer vision's most popular 

and influential object detection frameworks. 

2.1.7 YOLOv7 

YOLOv7, a cutting-edge object detection model, has emerged as a significant breakthrough in 

the field [15]. Developed by Alexey Bochkovskiy, it builds upon the strengths of its 

predecessors, YOLOv3 and YOLOv5, while introducing novel techniques to enhance accuracy 
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and speed. This comprehensive overview delves into the key features, performance, and 

applications of YOLOv7. 

• Efficient architecture: YOLOv7 employs a highly efficient architecture comprising a 

backbone and a neck. The backbone extracts features from the input image, while the neck 

integrates these features to generate detection predictions. 

• EfficientNet-based backbone: The backbone of YOLOv7 is based on EfficientNet, a family 

of neural networks renowned for their high performance-to-parameter ratio [12]. This 

choice enables YOLOv7 to achieve high accuracy while maintaining a relatively small 

model size. 

• Enhanced feature integration: YOLOv7 introduces a novel feature integration mechanism 

that effectively combines features from different levels of the network [18]. This 

mechanism enhances the model's ability to capture objects of various sizes and scales.  

• ELAN block: YOLOv7 incorporates the Enhanced Layer Aggregation Network (ELAN) 

block, designed to improve feature flow and reduce computational cost [15].  

• Bag of freebies and tricks: YOLOv7 leverages a "bag of freebies" and "bag of tricks" to 

further enhance performance without increasing the model's complexity. These techniques 

include data augmentation, label smoothing, learning rate warmup, mosaic augmentation, 

copy-paste augmentation, and selective focus [14].  

• Head optimization: The detection head of YOLOv7 has been optimized for efficiency and 

accuracy. It uses a combination of anchor boxes and prediction heads to generate detection 

predictions. 

YOLOv7 sets new state-of-the-art results on several object detection benchmarks, 

including COCO and Pascal VOC. It achieves high accuracy while maintaining a fast 

inference speed, making it suitable for real-time applications. Moreover, YOLOv7 offers a 

good balance between accuracy and speed, making it a versatile choice for various object 

detection tasks. 

2.1.8 YOLOv8 

YOLOv8 is the latest and most advanced version of the YOLO (You Only Look Once) series, 

offering substantial improvements in accuracy, speed, and flexibility for tasks such as object 
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detection, segmentation, and classification [24]. YOLOv8 builds upon its predecessor, 

YOLOv7, by integrating new architectural innovations and advanced techniques to improve 

performance and efficiency. YOLOv8 brings a redesigned architecture to improve multi-scale 

object detection while maintaining real-time performance. The model leverages CSPDarknet 

[16] (Cross Stage Partial Darknet) as the backbone, which enhances gradient flow and reduces 

computational redundancy during training. CSPDarknet divides the feature extraction process 

into stages that reduce the complexity and size of the model while retaining rich feature 

representations. This design promotes higher inference speed without sacrificing accuracy, 

making YOLOv8 more efficient than its predecessors. YOLOv8 also incorporates an 

Enhanced Feature Pyramid Network (FPN), which improves the handling of multi-scale object 

detection. The FPN ensures that low-level, mid-level, and high-level features are effectively 

combined, enhancing the model's ability to detect objects of varying sizes and in cluttered 

environments. One of the significant shifts in YOLOv8 is the move towards an anchor-free 

object detection mechanism. In contrast to earlier versions (such as YOLOv4 and YOLOv5), 

which required predefined anchor boxes for bounding box prediction, YOLOv8 eliminates the 

need for manually tuned anchor boxes. Instead, it directly predicts the center, width, and 

height of objects. This anchor-free approach simplifies the training process, making the model 

more adaptable to diverse datasets and reducing the computational overhead associated with 

anchor box tuning. This advancement aligns YOLOv8 with recent trends in object detection, 

where anchor-free methods are gaining traction due to their simplicity and flexibility [54][55].  

A significant innovation in YOLOv8 is the integration of transformer blocks within the 

model’s architecture. Transformers, originally developed for natural language processing, have 

proven highly effective in capturing long-range dependencies in image data. In YOLOv8, 

transformers enhance the model’s ability to understand spatial relationships between objects 

and their surroundings. This addition improves the detection of objects in complex scenes, 

particularly when objects are occluded or surrounded by background clutter. The transformer 

components enable YOLOv8 to focus attention on the most relevant regions of an image, 

enhancing detection accuracy. YOLOv8 adopts a decoupled head architecture, where the tasks 

of object classification and localization are separated into two distinct branches. This approach 

allows the model to optimize each task independently, improving both the accuracy of 

bounding box predictions and the precision of class assignments. By decoupling these tasks, 
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YOLOv8 addresses the challenge of balancing the competing objectives of classification and 

localization, leading to superior performance on detection benchmarks. YOLOv8 benefits 

from advanced training strategies that contribute to its robust performance: 

• Label Assignment Optimization: This improvement refines how ground-truth labels are 

assigned to predicted bounding boxes during training. The optimized label assignment 

enhances the model’s ability to match predicted boxes with ground-truth boxes accurately, 

resulting in more precise detections. 

• Data Augmentation: YOLOv8 uses advanced augmentation techniques, such as mosaic 

augmentation and MixUp, to improve generalization. These augmentations simulate a 

wide range of real-world scenarios, including variations in lighting, scale, and occlusion, 

helping the model become more robust against challenging conditions. 

YOLOv8 incorporates a series of Bag-of-Freebies (BoF) techniques that further improve 

model accuracy without adding computational complexity during inference. For instance, 

YOLOv8 uses IoU-aware loss functions to enhance the precision of bounding box regression. 

Additionally, advanced non-maximum suppression (NMS) methods are employed to remove 

redundant bounding boxes, ensuring that only the most accurate detections are retained. 

YOLOv8 represents a significant advancement in the YOLO series, with improvements in 

architectural design, training techniques, and multi-task learning. Its anchor-free detection, 

decoupled head, and transformer integration make it one of the most accurate and efficient 

object detection models currently available. YOLOv8’s versatility extends beyond object 

detection to tasks like segmentation and classification, maintaining the speed and efficiency 

that the YOLO family is known for, making it a valuable tool for real-time computer vision 

applications. 

2.2 Multi-view Object detection Methds 

Multiview object detection has garnered significant attention in the field of computer vision 

due to its applicability in various real-world scenarios such as autonomous driving, 

surveillance systems, and robotics. Leveraging multiple viewpoints provides richer contextual 

information, enhancing the robustness and accuracy of object detection systems. Data 
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augmentation techniques play a crucial role in augmenting the available training data to 

improve the generalization and performance of multiview object detection models. This 

literature survey aims to provide a comprehensive overview of the existing research on 

multiview object detection using data augmentation techniques. 

Research in multiview object detection has witnessed the development of various 

techniques leveraging convolutional neural networks (CNNs) and data augmentation methods. 

For instance, Hou et al. [19] proposed a multiview object detection framework based on a 

single-stage detector architecture, integrating data augmentation techniques such as rotation 

and scaling to handle object variability across views. Similarly, Zhang et al. [20] introduced a 

two-stage detection approach that incorporates viewpoint-aware feature fusion and utilizes 

geometric transformations for data augmentation, achieving improved performance on 

multiview datasets. For instance, Zhou et al. [21] introduced a viewpoint-aware framework 

that incorporates multiple viewpoint-specific detectors and fuses their outputs to achieve 

robust object detection across views. 

In a study cited as [25], researchers explore a multi-class boosting method termed joint 

boosting. This method effectively reduces computational requirements and sample complexity 

by identifying common features that can be leveraged across multiple object classes or 

viewpoints, thus simplifying the training process. Instead of training detectors separately for 

each class, this approach employs joint training techniques to improve efficiency. In another 

investigation referenced as [26], the focus is on achieving optimal efficiency in distributed 

camera networks while maintaining low power consumption and bandwidth requirements. The 

innovation revolves around a distinctive compression framework tailored for encoding SIFT-

based object histograms. This approach capitalizes on three essential properties of multi-view 

histograms for a 3D object: histogram sparsity, non-negativity, and the shared sparsity 

observed across various viewpoints. The study investigates the efficacy of a multi-view object 

detection strategy underpinned by deep learning techniques. In this approach, the detection 

outcomes from distinct views are merged, thereby augmenting the system's capability to 

accurately identify objects across diverse perspectives. The experiments were conducted 

utilizing the VOC 2007 dataset, and three prominent models, namely YOLO, YOLOv2, and 

SSD, were employed for evaluation. The results demonstrate notable variations in mean 
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Average Precision (mAP) scores across the models, with SSD exhibiting the highest 

performance at 64.4%, followed by YOLOv2 at 56.3%, and YOLO at 38.6%. This underscores 

the effectiveness of the proposed multi-view approach, particularly when coupled with 

advanced deep learning models, in enhancing object detection accuracy. 

The paper referred to as [83] presents a novel approach to enhancing object detection by 

utilizing multi-view techniques combined with deep learning models such as YOLO, 

YOLOv2, and SSD. The research focuses on addressing the challenges of detecting small 

objects, which are often difficult for conventional methods. The study proposes a multi-view 

framework that integrates views from different perspectives to improve detection accuracy. 

Experimental results demonstrate that the multi-view versions of these models outperform 

their classical counterparts in both retrieval capability (measured by Average F-measure) and 

detection accuracy (measured by mean Average Precision). Specifically, the proposed 

approach achieves significant improvements in detecting small objects while maintaining 

faster processing times compared to methods based on region proposals, such as Faster R-

CNN. This research highlights the potential of multi-view techniques for improving real-time 

object detection, especially in applications where small objects are prevalent. The paper 

referred to as  [84] introduces the Deep Dense Face Detector (DDFD), a deep learning-based 

approach for detecting faces across a wide range of orientations without relying on pose or 

landmark annotations. Unlike other methods, it simplifies the architecture by eliminating 

additional components such as bounding-box regression or SVM classifiers. 

2.3 Overview of Object Tracking 

Object tracking is a critical aspect of computer vision and is used to monitor the movement 

and location of objects within a series of frames in a video or in real time. The primary goal is 

to ensure that the system maintains accurate identification and spatial information about 

objects of interest over time. Object tracking is essential in various applications, including 

surveillance, autonomous driving [67][68][69], human-computer interaction, augmented 

reality, and video editing, medical diagnosis systems [70], and robotics [71].  
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Object tracking methods can be categorized in various ways. For instance, Fiaz et al. [57] 

conducted a comprehensive study that classifies tracking methods into two main groups: 

correlation filter-based and non-correlation filter-based methods. Li et al. [58] reviewed and 

compared deep learning methods for object tracking. Additionally, Verma [59] categorized 

tracking methods into five types: feature-based, segmentation-based, estimation-based, 

appearance-based, and learning-based methods. Classification of the object tracking methods 

is shown in the Figure 2.3: 

 

FIGURE 2.3 Methods for Object Tracking 

The feature-based method is one of the simpler approaches to object tracking. It begins 

with extracting features such as color, texture, and optical flow. These features must be distinct 

to ensure objects can be easily identified in the feature space. The next step involves using 

these features to find the most similar object in the subsequent frame based on a similarity 

criterion. One challenge with these methods lies in the extraction step, as the features must be 

unique, precise, and reliable to effectively distinguish the target object from others. Here are 

some features commonly used for object tracking [60][61].   

Segmenting foreground objects from a video frame is essential and the most crucial step 

in visual tracking. This process involves separating foreground objects, typically the moving 

elements in a scene, from the background. To track these objects effectively, they must be 

isolated from the background. In the Bottom-Up tracking approach, the process is divided into 

two main tasks: foreground segmentation and object tracking. First, low-level segmentation is 

used to identify regions in each frame. Then, features are extracted from these foreground 
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regions, enabling tracking based on these identified features [59][62]. The joint-based method 

is typically divided into three stages. First, an appearance model is developed using a 

probabilistic framework. Next, this model is used to perform segmentation. Finally, the 

tracking process is carried out based on the segmented data [63][64][65]. 

Detection-based Tracking leverages pre-trained object detectors to find objects and then 

track them across frames [66]. This is a popular approach using machine learning. Basic Steps 

of Detection-based trackers are shown below: 

• Object Detection: The first step is to detect objects in each video frame using object 

detection algorithms such as YOLO, SSD etc. 

• State Estimation: The state of each tracked object needs to be estimated, including its 

position, velocity, size, and other attributes. This is typically done using filtering 

techniques such as Kalman filters or particle filters, which predict the future state of each 

object based on its past motion and incorporate new observations to refine the estimates. 

• Data Association:  Data association refers to the process of correctly linking object 

detections across frames, even in cases where objects may occlude each other, or undergo 

significant appearance changes. 

 

2.3.1 SORT 

Simple Online and Realtime Tracking (SORT) is a widely recognized algorithm designed for 

real-time multi-object tracking in videos [28]. It is particularly valued for its simplicity, 

efficiency, and ease of implementation, making it a popular choice in research and practical 

applications. SORT operates in an online manner, meaning it processes frames sequentially 

without requiring access to future frames, making it well-suited for real-time applications. 

SORT relies on external object detectors, such as Faster R-CNN, YOLO, or SSD, to 

identify objects in individual video frames. These detectors provide bounding boxes around 

detected objects, along with confidence scores. SORT employs a Kalman filter to predict the 

future position of each tracked object based on its previous state. The Kalman filter assumes a 

linear motion model, which predicts object movement based on position and velocity. This 

helps in handling slight variations or occlusions between frames. To associate detections with 
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existing tracks, SORT uses the Hungarian algorithm with a cost function based on the 

Intersection over Union (IoU) metric. IoU measures the overlap between detected bounding 

boxes and predicted bounding boxes, ensuring that the most likely matches are paired. SORT 

maintains and updates tracks using the following strategies: 

• Creation of New Tracks: If a detection does not match any existing track, a new track is 

initialized. 

• Track Updates: Matched tracks are updated with the associated detections, refining their 

positions using the Kalman filter. 

• Track Termination: Tracks that remain unmatched for a predefined number of frames are 

terminated to avoid false positives. 

SORT offers a lightweight and efficient solution for online tracking tasks, balancing speed 

and accuracy in dynamic environments. Its simplicity and compatibility make it an essential 

tool for researchers and practitioners in the field of computer vision. 

2.3.2 DeepSORT 

 Deep Simple Online and Realtime Tracking (DeepSORT) is an advanced multi-object 

tracking algorithm that enhances the original SORT by integrating deep appearance features 

[29]. These features, extracted using a convolutional neural network, enable the algorithm to 

distinguish objects based on visual similarity, improving robustness in crowded scenes and 

during occlusions. By combining motion information from a Kalman filter with appearance 

embeddings, DeepSORT achieves reduced ID switches and more accurate tracking. It is 

widely used in applications like surveillance, autonomous vehicles, and sports analytics due to 

its efficiency and reliability. 

2.3.3 ByteTrack 

ByteTrack is a state-of-the-art multi-object tracking algorithm designed to improve tracking 

accuracy by leveraging both high and low-confidence detections from an object detector [24]. 

Unlike conventional methods that discard low-confidence detections, ByteTrack integrates 

them into the tracking process to handle occlusions and crowded scenes effectively. It uses a 
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two-stage association strategy: matching high-confidence detections first, followed by low-

confidence ones, to maintain object trajectories. ByteTrack is computationally efficient, highly 

robust, and excels in challenging scenarios, making it ideal for real-time applications like 

surveillance and autonomous driving. 

 

2.4 Multi-view Object Tracking 

Multi-camera object tracking has emerged as a pivotal area in computer vision, enhancing the 

ability to track objects with greater accuracy and robustness by leveraging multiple 

viewpoints. This literature review explores key advancements, methodologies, and 

applications in multi-camera object tracking, highlighting the evolution and current state of the 

field. 

Accurate camera calibration and synchronization are foundational for effective multi-

camera tracking. Zhang introduced a flexible new technique for camera calibration, which has 

been widely adopted due to its robustness and ease of implementation [51]. Methods for 

synchronizing cameras typically involve time-stamping video frames or using hardware 

triggers to ensure frames are captured simultaneously across all cameras [49]. eature-based 

tracking methods extract distinctive features from objects and match these features across 

different camera views [51][52]. Alahi et al. proposed using ORB (Oriented FAST and Rotated 

BRIEF) features for pedestrian tracking across multiple cameras, demonstrating robustness to 

variations in lighting and perspective. Feature-based methods often rely on descriptors like 

SIFT (Scale-Invariant Feature Transform) and SURF (Speeded Up Robust Features) to achieve 

reliable cross-camera matching. Graph-based approaches model the multi-camera tracking 

problem as a network flow or graph optimization task [43]. Berclaz et al. developed a network 

flow-based algorithm that represents the tracking task as finding the optimal paths in a graph, 

with nodes representing detected objects and edges representing possible transitions between 

frames and views. This method effectively handles occlusions and maintains consistent object 

identities. Probabilistic methods leverage statistical models to manage uncertainties in tracking 

[45]. Fleuret et al. introduced a probabilistic occupancy map framework, which estimates the 

likelihood of an object's presence in various locations within the camera network. Bayesian 
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networks and particle filters are also commonly used to fuse data from multiple cameras and 

track objects over time [42][47]. 

The advent of deep learning has significantly advanced multi-camera object tracking. 

Ristani and Tomasi proposed a deep learning approach that combines Convolutional Neural 

Networks for feature extraction with Recurrent Neural Networks (RNNs) for modeling 

temporal dependencies. This method achieved state-of-the-art performance on several 

benchmark datasets by effectively capturing complex object appearances and movements [48]. 

Tracking multiple objects across multiple cameras adds complexity due to occlusions and 

interactions between objects. Zhang et al. introduced a framework that integrates appearance 

features and motion patterns to track multiple objects across disjoint camera views. Their 

approach effectively addresses challenges related to occlusions and re-identification, 

demonstrating high accuracy in crowded environments [52]. Data association is crucial for 

maintaining object identities across frames and camera views. Bae and Yoon presented a 

confidence-based data association method that uses a combination of appearance, motion, and 

contextual information to associate detected objects across cameras. Their algorithm 

demonstrated robustness in complex environments with frequent occlusions and interactions. 

Multi-camera tracking has diverse applications, including surveillance, traffic monitoring, and 

sports analytics. For instance, Fleuret et al. applied multi-camera tracking for pedestrian 

monitoring in public spaces, significantly improving detection and tracking accuracy [46]. 

Wang et al. utilized multi-camera systems for analyzing traffic flow and detecting accidents, 

demonstrating the practical utility of multi-camera tracking in real-world scenarios [50]. 

Despite significant advancements, multi-camera object tracking faces ongoing challenges such 

as handling large-scale data, ensuring real-time performance, and addressing privacy concerns. 

Future research is expected to focus on developing more efficient algorithms, enhancing 

scalability, and integrating advanced technologies such as edge computing and the Internet of 

Things (IoT) for broader real-world applications. 

2.5 Evaluation Parameters 

Evaluating object detection and tracking systems involves several key parameters to assess 

their performance effectively. These parameters help determine how accurately and efficiently 

the systems can detect and track objects across different scenarios and conditions.  
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2.5.1 Evaluation Parameters for Object Detection 

Accuracy metrics for object detection include precision (P), recall (R), F1 score, average 

precision (AP), and mean average precision (mAP). Intersection over Union (IoU) is utilized 

for object localization. 

Precision (P) is the ratio of true positive detections (TP) to the total number of positive 

predictions (TP+FP), where FP stands for false positives. Precision measures the accuracy of 

the detected objects. 

 𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2.1) 

 

Recall is the ratio of true positive detections (TP) to the total number of actual positives 

(TP+FN), where FN stands for false negatives. Recall measures the ability of the detector to 

find all relevant objects. 

 
𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(2.2) 

 

The F1 score is the harmonic mean of precision and recall, providing a single metric to 

evaluate the balance between precision and recall.  

 

 𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃 × 𝑅

𝑃 + 𝑅
 (2.3) 

 

Average Precision (AP) is the area under the precision-recall curve, calculated as the 

weighted mean of precisions at each threshold (Pn), with the increase in recall (Rn − Rn−1) as 

the weight. 

 𝐴𝑃 =  ∑(𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛

𝑛

 (2.4) 
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Mean Average Precision (mAP) is the mean of the average precision values for all N object 

classes. 

 
𝑚𝐴𝑃 =  

1

𝑁
∑ 𝐴𝑃𝑖

𝑛

𝑖=1

 

 

(2.5) 

Intersection over Union (IoU) measures the overlap between the predicted bounding box 

(Apred) and the ground truth bounding box (Agt).  

 𝐼𝑜𝑈 =
𝐴𝑝𝑟𝑒𝑑 ∩ 𝐴𝑔𝑡

𝐴𝑝𝑟𝑒𝑑 ∪ 𝐴𝑔𝑡
 (2.6) 

2.5.2 Evaluation Parameters for Object Tracking 

Multi-object tracking metrics[80][81] are metrics used to evaluate the accuracy of tracking 

algorithms. There are two primary metrics that experts consider while evaluating tracking 

algorithms: MOTA and MOTP.  

The MOTA [31] is perhaps the most widely used metric to evaluate a tracker’s 

performance. MOTA is calculated as: 

 
𝑀𝑂𝑇𝐴 = 1 −  

∑ 𝐹𝑁𝑡 + 𝐹𝑃𝑡  + 𝐼𝐷𝑆𝑊𝑡𝑡

∑ 𝐺𝑇𝑡𝑡
 

 

(2.7) 

 

where FN represents the number of false negatives (missed detections), FP represents the 

number of false positives (false alarms), IDSW represents the number of identity switches, and 

GT represents the total number of ground truth objects. 

The percentage MOTA (−∞, 100].  MOTA can also be negative in cases where the number 

of errors made by the tracker exceeds the number of all objects in the scene. 

MOTP measures the localization accuracy of the tracked objects. It calculates the average 

distance between the predicted positions of the tracked objects and their corresponding ground 

truth positions. MOTP is calculated as: 
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 𝑀𝑂𝑇𝑃 =  
∑ ∑ 𝑑(𝑖)

𝑁𝑡
𝑖=1

𝑇
𝑡=1

∑ 𝑁𝑡
𝑇
𝑡=1

 (2.6) 

Where T is total number of frames, 𝑁𝑡is the number of tracked objects in frame t, d(i) is 

the Euclidean distance between the predicted position and the ground truth position of the ith 

tracked object in frame t. 

Evaluating object detection and tracking systems requires a combination of accuracy, 

localization, robustness, trajectory, and efficiency metrics. These parameters provide a 

comprehensive view of the system's performance and help identify areas for improvement[82]. 

 

 

 

 

 



CHAPTER – 3 

Enhancing Multiview Object Detection through Image 

Data Augmentation and Deep Neural Networks 

3.1  Introduction 

In the rapidly evolving field of computer vision, object detection remains a cornerstone task 

with applications ranging from autonomous driving to surveillance systems. The advent of 

deep neural networks (DNNs) has significantly advanced the accuracy and efficiency of object 

detection systems, yet challenges persist, particularly in the context of multiview object 

detection. Multiview object detection involves recognizing and localizing objects from 

multiple viewpoints, a task that inherently demands robust models capable of handling diverse 

perspectives and occlusions. 

Traditional methods of object detection often struggle with the variability and complexity 

presented by multiple viewpoints. These limitations underscore the need for innovative 

approaches that can effectively generalize across different angles and conditions. One 

promising avenue to address these challenges is through image data augmentation — a 

technique that artificially expands the dataset by creating modified versions of images. Data 

augmentation has been shown to improve model robustness and generalization, particularly in 

scenarios where acquiring a large volume of diverse training data is impractical. This chapter 

explores the intersection of image data augmentation and deep neural networks to enhance 

multiview object detection. By leveraging advanced augmentation techniques, this research 

aims to enrich the training datasets, thereby enabling DNNs to better learn and generalize from 

various perspectives. Furthermore, this work investigates the integration of these augmented 

datasets with state-of-the-art neural network architectures to evaluate their performance 

improvements in multiview object detection tasks. The primary objectives in this chapter are 

threefold: first, to develop effective image data augmentation strategies tailored for multiview 

object detection; second, to integrate these augmented datasets with deep neural networks; and 

third, to assess the impact of these combined methods on the accuracy and robustness of 

multiview object detection systems. Through a comprehensive experimental framework, this 
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thesis seeks to contribute to the broader understanding of how data augmentation and neural 

network design can synergistically improve multiview object detection. 

By addressing the challenges associated with multiview object detection, this research not 

only aims to enhance the performance of current detection systems but also provides insights 

into the broader implications of data augmentation and deep learning in computer vision. The 

findings of this study have the potential to inform future research and development, paving the 

way for more advanced and reliable object detection technologies in diverse application 

domains. 

3.2 Image Data Augmentation 

Image data augmentation is a critical technique in computer vision used to artificially expand 

the size and diversity of a training dataset without the need to collect additional data. This 

process involves creating modified versions of existing images, which helps improve the 

robustness and generalization of machine learning models, particularly deep neural networks. 

Data augmentation is especially beneficial in scenarios where acquiring a large and varied 

dataset is impractical or costly. Here, we explore the key methods, benefits, and applications 

of image data augmentation, with a particular focus on its role in enhancing multiview object 

detection. 

3.2.1 Methods of Image Data Augmentation 

Image data augmentation can be categorized into three types: geometric transformations, and 

photometric transformations. 

• Geometric Transformation: Geometric transformations change the spatial structure of an 

image, altering the arrangement of pixels without modifying their color or intensity. These 

transformations are especially useful in making models invariant to changes in viewpoint, 

rotation, scale, or position. Let 𝑥 ∈ 𝑅𝐻×𝑊×𝐶where H, W and C are the height, width, and 

number of color channels, respectively. 

o Rotation: Rotate the image by a certain angle θ. Rotating images helps the model 

recognize objects in different orientations and is common for datasets where the 

object’s angle is not fixed. 
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 𝑥′ = 𝑅𝑜𝑡𝑎𝑡𝑒 (𝑥,  Ɵ) = 𝑥 ×  Ɵ (3.1) 

 

 Where θ is the rotation angle, and R is the rotation transformation matrix. 

o Scaling: Resize the image by scaling it along the x and y dimensions. 

 𝑆𝑐𝑎𝑙𝑒 (𝐼,  𝑆𝑥,  𝑆𝑦) = 𝑟𝑒𝑠𝑖𝑧𝑒(𝐼,  𝑆𝑥 ∗ 𝑤𝑖𝑑𝑡ℎ,  𝑆𝑦 ∗ ℎ𝑒𝑖𝑔ℎ𝑡) (3.2) 

where, 𝑆𝑥 and 𝑆𝑦 scaling factors along the x and y dimensions, respectively. This 

transformation makes the model robust to objects of different sizes and distances. 

o Translation: Shift the image horizontally and/or vertically by a certain number of 

pixels. This helps the model generalise objects that may appear in different parts of an 

image. 

 𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒(𝐼,  𝛥𝑥, 𝛥𝑦) = 𝐼(𝑥 − 𝛥𝑥,  𝑦 − 𝛥𝑦) (3.3) 

Where 𝛥𝑥 and 𝛥𝑦 are the horizontal and vertical translation distances, respectively. 

o Flipping: Flip the image horizontally and/or vertically. Horizontal flipping is 

commonly used for images where objects are symmetrical along the vertical axis, such 

as faces or animals. 

 𝐹𝑙𝑖𝑝(𝐼) = 𝐼(: , 𝑒𝑛𝑑:−1: 1)(𝑓𝑜𝑟 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑓𝑙𝑖𝑝) (3.4) 

 𝐹𝑙𝑖𝑝(𝐼) = 𝐼(𝑒𝑛𝑑:−1: 1, : )(𝑓𝑜𝑟 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑓𝑙𝑖𝑝) (3.5) 

 

• Photometric Transformations: Photometric transformations modify the image’s pixel 

values to change its color, brightness, contrast, or other photometric properties without 

altering the spatial layout. These transformations help models generalize to different 

lighting conditions, exposure levels, and camera characteristics. 

o Brightness Adjustment: Changing the brightness levels to simulate different lighting 

conditions. 

 𝑥′ = 𝑥 + ∆𝑏 (3.6) 

where Δb is the brightness adjustment factor. This makes the model robust to changes 

in illumination. 
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o  Contrast Adjustment: Modifying the contrast to emphasize or de-emphasize features. 

 𝑥′ = 𝛼𝑥 + 𝛽 (3.7) 

where α is the contrast adjustment factor, and β is a bias term. Increasing contrast 

makes shadows and highlights more prominent, while decreasing it flattens the tones, 

simulating overexposed or underexposed scenes. 

o Color Jittering: Randomly changing the color properties, such as hue, saturation, and 

brightness. 

 
𝑥′ = 𝐽(𝑥, 𝛿ℎ, 𝛿𝑠, 𝛿𝑣) 

 
(3.8) 

 

where δh, δs, and δv  are adjustments to hue, saturation, and brightness, respectively, 

and J is the color jittering function. This transformation simulates natural variations in 

lighting and color tones, increasing the robustness of the model. 

o  Gaussian Noise: Adding random noise to simulate sensor imperfections and 

environmental conditions. 

 𝑥′ = 𝑥 +𝒩(0, 𝜎2) (3.9) 

       Where 𝒩(0, 𝜎2) is Gaussian noise with mean 0 and variance 𝜎2. Noise addition helps 

the model handle image imperfections, such as those from low-light conditions or poor-

quality sensors. 

3.2.2 Benefits of Image Data Augmentation 

Data augmentation provides several key benefits for training machine learning models, 

especially in computer vision and other fields where labeled data can be limited or expensive 

to obtain. The primary benefits of image data augmentation are as below: 

• Improved Generalization: Data augmentation exposes the model to a wider variety of 

scenarios, reducing overfitting and improving the model's ability to generalize to unseen 

data. 
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• Enhanced Robustness: By training on augmented data, models become more resilient to 

variations in viewpoint, lighting, occlusions, and other real-world conditions. 

• Reduced Data Collection Costs: Augmentation allows for the creation of a larger and more 

diverse training set without the need for extensive and expensive data collection efforts. 

• Mitigation of Class Imbalance: Augmentation techniques can be used to balance the 

distribution of classes in the training dataset, addressing issues related to underrepresented 

classes. 

• Facilitates Training of Deep Models: Deep neural networks often require large amounts of 

data to perform well. Augmentation helps meet this requirement by generating additional 

training samples. 

3.2.3 Applications in Multiview Object Detection 

In the context of multiview object detection, image data augmentation is particularly valuable. 

Multiview detection involves recognizing and localizing objects from different angles and 

perspectives, making it crucial for models to handle a wide range of variations. Here are 

specific applications: 

• Different Viewpoints: Geometric transformations like rotation and translation help simulate 

different camera angles and positions, enabling the model to learn from multiple 

perspectives. 

• Handling Occlusions and Variability: Techniques such as cutout and Mixup help the 

model learn to detect objects even when parts are occluded or when they appear in varied 

contexts. 

• Enhancing Real-World Performance: Augmented datasets better represent the diversity 

encountered in real-world scenarios, improving the model's performance in practical 

applications such as autonomous driving and surveillance. 

• Training with Limited Data: When only a small dataset is available, augmentation 

significantly boosts the model's training process by providing varied and enriched samples. 

Image data augmentation is a powerful tool in the enhancement of multiview object 

detection. By expanding and diversifying the training dataset, it helps create more robust and 
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generalizable models. In combination with deep neural networks, data augmentation 

techniques contribute to the advancement of object detection technologies, enabling more 

accurate and reliable performance across a wide range of applications. This research aims to 

explore and leverage these techniques to push the boundaries of what is possible in multiview 

object detection, addressing existing challenges and paving the way for future innovations. 

3.3 Proposed Approach 

Figure 3.1 illustrates a detailed workflow for improving object detection using image data 

augmentation and deep neural networks. The process starts with a dataset of images, 

specifically from the Open Image Dataset v6 [36]. Various data augmentation techniques are 

applied to these images to enhance the diversity and robustness of the training dataset. 

 

FIGURE 3.1 Architecture of multiview object detection using image data 

augmentation and deep neural networks 

Next, object detection models are trained with and without augmented images. Pre-trained 

models, such as Faster R-CNN, SSD, EfficientDet, and CenterNet, are used as the initial 

starting point. These models have been previously trained on the COCO dataset and have 

already learned useful feature representations. The pre-trained models are then fine-tuned on 
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the augmented dataset, allowing the models to adapt their learned features to the specific 

characteristics of the new dataset and improving their performance. 

 

FIGURE 3.2 Detail steps of Multiview Object Detection using Image Data 

Augmentation 

Figure 3.2 illustrates the comprehensive steps for multi-view object detection utilizing 

image data augmentation. Initially, images of three object categories—Bicycle, Bus, and 

Car—are sourced from the Open Image Dataset. These images undergo data augmentation to 

produce new images with different viewpoints of the objects. Next, the objects are annotated 

using the LabelImg tool for the categories mentioned above. Figure 3.3 presents example 

annotations in XML format for an image. The figure also displays the filename, file path, 

image dimensions, and the coordinates of the objects and their bounding boxes. 
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FIGURE 3.3 Sample annotation file in XML format 

Figure 3.4 displays sample output images produced through image data augmentation, 

demonstrating how multiple variations can be created from a single image, highlighting the 

versatility and advantages of this technique. 
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FIGURE 3.4 Sample images after applying Image Data Augmentation 

3.4 Experiment and Results 

The performance of the object detection models is evaluated with and without using Image 

Data Augmentation. Images are sourced from Open Image Dataset V6.  

3.4.1 Implementation Detail 

All modules were coded in Python version 3.10.12. Deep learning models were developed 

with the help of Tensorflow (version 2.17.0) and Cuda(version 12.1). The Faster RCNN, SSD, 

EfficientDet D1 and CenterNet network underwent training with image dimensions set at 640 

× 640, 640 × 640, 640 × 640 and 512 × 512 respectively across 10000 steps, utilizing a mini-

batch size of 8 images. Additionally, the model's weights were set using the COCO pre-trained 

model. The backbone for Faster RCNN and CenterNet Resnet 101 [95], the backbone for 

EfficientDet D1 is EfficientNet and the backbone for SSD is Mobile net [96]. 



Chapter: 3 Enhancing Multiview Object Detection through Image Data Augmentation and Deep Neural 

Networks 

41 
 

 

3.4.2 Dataset 

Open Images Dataset is a large-scale visual dataset containing millions of images with 

extensive annotations. It is one of the most comprehensive resources available for computer 

vision research. It provides diverse and high-quality data for tasks such as object detection, 

image classification, and instance segmentation.  

The deep-learning models are trained using the Open Images Dataset, focusing on three 

object categories: bus, bicycle, and car. Various training and testing ratios are employed 

specifically 90%-10%, 80%-20%, and 70%-30%. A total of 2,000 images are used to train the 

models without image data augmentation, while 2,500 images are used with image data 

augmentation. 

3.4.3 Experimental Results 

Table 3.1 presents the mean average precision (mAP) of various object detection models—

CenterNet, Efficient Det D1, Faster RCNN, and SSD—evaluated at Intersection over Union 

(IoU) thresholds of 0.50 and 0.75, without applying Image Data Augmentation. The results are 

reported for different train-test split ratios of 90%-10%, 80%-20%, and 70%-30%. Table 3.2, 

on the other hand, displays the mAP scores for the same models, but this time with Image Data 

Augmentation applied, using the same train-test split ratios. Additionally, Figures 3.4, 3.5, and 

3.6 illustrate the performance comparison between the object detection models with and 

without the use of image data augmentation at an IoU threshold of 0.50. 
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TABLE 3.1 Performance of object detection models without Image Data Augmentation 

on Open Image Vehicle Dataset V6 

Model CenterNet 
Efficient Det 

D1 
Faster RCNN SSD 

Backbone Resnet 101 EfficientNet Resnet 101 Mobile net 

Train – Test Ratio: 90% 10% 

mAP@IoU=0.50 68.4 71.7 65.6 64.8 

mAP@IoU=0.75 50 51.4 45.1 45.5 

Train – Test Ratio: 80% 20% 

mAP@IoU=0.50 63.4 67.9 59.1 59.8 

mAP@IoU=0.75 48.4 46.9 42.7 43.3 

Train – Test Ratio: 70% 30% 

mAP@IoU=0.50 63.2 67.5 58.5 59.7 

mAP@IoU=0.75 46.9 46.6 41.9 42.1 

 

TABLE 3.2 Performance of object detection models with Image Data Augmentation 

on Open Image Vehicle Dataset V6 

Model CenterNet 
Efficient Det 

D1 
Faster RCNN SSD 

Backbone Resnet 101 EfficientNet  Resnet 101 Mobile net 

Train – Test Ratio: 90% 10% 

mAP@IoU=0.50 72.7 73.5 68.3 67 

mAP@IoU=0.75 52.7 53.4 46.4 45.2 

Train – Test Ratio: 80% 20% 

mAP@IoU=0.50 68.1 67.7 60.1 61.7 

mAP@IoU=0.75 49.3 48.2 43 44.8 

Train – Test Ratio: 70% 30% 

mAP@IoU=0.50 71.6 70.4 62.8 63.4 

mAP@IoU=0.75 50.9 49.8 47.5 47.5 
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FIGURE 3.5 Comparison of Deep learning models with and without augmentation at 

Train-test ratio 90%-10% 

 

FIGURE 3.6 Comparison of Deep learning models with and without augmentation at 

Train-test ratio 80%-20% 
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FIGURE 3.7 Comparison of Deep learning models with and without augmentation at 

Train-test ratio 70%-30% 

Figures 3.8 and 3.9 present sample outputs of multiview object detection applied to the 

Open Image Dataset. These figures display the bounding box coordinates and confidence 

scores for various object categories. 

 

FIGURE 3.8 Sample Output Images of Multiview Object Detection on Open Image 

Dataset. 

0

20

40

60

80

CenterNet Efficient Det D1 Faster RCNN SSD

m
AP

 @
 0

.5
0

Axis Title

Comparison of DL Models with and 
without augmentation (Train-Test ratio 

70%-30%)

Without Image Aumentation With Image Aumentation



Chapter: 3 Enhancing Multiview Object Detection through Image Data Augmentation and Deep Neural 

Networks 

45 
 

 

FIGURE 3.9 Sample Output Images of Multiview Object Detection on Open Image 

Dataset. 

3.5 Application Of multi-view object detection in Autonomous Driving 

using Deep Learning Approach 

Autonomous vehicles rely heavily on their ability to perceive their surroundings in order to 

maintain safe and effective driving. Object detection plays a key role in this system by 

enabling the vehicle to identify and localize essential objects, including pedestrians, other 

vehicles, traffic signs, and more. In real-time applications, deep learning-based object 

detectors are crucial for accurately identifying these elements. 

The field of autonomous driving is evolving rapidly, with the potential to enhance road 

safety, increase operational efficiency, and provide greater convenience for users. A central 

aspect of this innovation is the vehicle's capability to perceive and understand its environment. 

To overcome limitations inherent in single-view systems, such as narrow field of vision and 

challenges with occlusion, multi-view object detection offers an enhanced solution by 

combining data from several perspectives. This approach provides a more comprehensive 

understanding of the vehicle’s surroundings. 
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Deep learning methods have shown exceptional performance in this area, with models 

like YOLO (You Only Look Once) setting the standard for real-time object detection. The 

most recent version, YOLOv8, brings notable advancements in both detection speed and 

accuracy, positioning it as a prime candidate for autonomous driving technologies. This paper 

examines the application of YOLOv8 in multi-view object detection, leveraging the Udacity 

self-driving car dataset for training and validation purposes. 

The Udacity self-driving car dataset is a valuable resource, containing images captured 

from various camera viewpoints to simulate the conditions a vehicle would encounter on the 

road. By using this dataset, YOLOv8 can be trained to detect a broad array of objects from 

different angles, including pedestrians, vehicles, and traffic signs. The multi-view approach 

not only enhances the accuracy of detection but also boosts the vehicle's ability to respond to a 

wide range of dynamic scenarios. 

This study focuses on the integration of YOLOv8 with the Udacity self-driving car 

dataset, showcasing how this combination can improve current autonomous vehicle perception 

systems. The paper covers the methodology, implementation details, and the outcomes of the 

experiments, as well as the potential benefits and challenges associated with deploying multi-

view object detection in practical autonomous driving situations. 

The Udacity self-driving car dataset, hosted on Roboflow [98], is an extensive collection 

of images designed to aid the development and evaluation of autonomous driving 

technologies. This dataset includes a large number of front-facing camera images captured in a 

variety of driving conditions and environments, providing a diverse and reliable foundation for 

training object detection models. The dataset contains a total of 3,000 images, which are 

divided into training (80%), testing (10%), and validation (10%) sets. 
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FIGURE 3.10 Steps applied for object detection using YOLOv8 Object Detector 

Within the dataset, there are annotations for 11 distinct object classes, which are 

representative of common elements encountered during driving. These classes include 'biker', 

'car', 'pedestrian', and various traffic light states such as 'trafficLight', 'trafficLight-Green', 

'trafficLight-GreenLeft', 'trafficLight-Red', 'trafficLight-RedLeft', 'trafficLight-Yellow', 

'trafficLight-YellowLeft', and 'truck'. The inclusion of these diverse object types enables the 

model to improve its detection and classification capabilities across a broad range of real-

world driving scenarios. 

For the training process, Python 3.10.12 and the PyTorch framework (version torch-

2.2.1+cu121) were employed, running on a Tesla T4 GPU with 15,102 MiB of memory. The 

YOLOv8 model was trained on images with a resolution of 640 × 640 pixels over the course 

of 100 epochs, using a pre-trained model that had been initially trained on the COCO dataset. 

The YOLOv8 architecture consists of 168 layers and includes a total of 3,012,993 parameters 

and 3,012,977 gradients. Its computational performance reaches 8.2 Giga Floating-Point 

Operations per Second (GFLOPs), which ensures efficient processing of large datasets for 

real-time object detection in autonomous driving systems. 
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TABLE 3.3 Performance of object detection modes for vehicle detection. 

Model Dataset 
mAP (Mean Average 

Precision) 

Deterministic RetinaNet 

(Baseline) [99] 
KITTI 37.11% 

Output Redundancy [99] KITTI 34.99% 

Our approach - YOLOv8 Udacity Self-driving car dataset 46% 

 

In this study, we assessed the performance of our approach using the YOLOv8 model on 

the Udacity Self-driving Car dataset, comparing it with other established methods, including 

the deterministic RetinaNet (Baseline) and the Output Redundancy technique, both evaluated 

on the KITTI dataset [97]. The performance of these methods was measured using Mean 

Average Precision (mAP), a widely recognized metric for evaluating object detection models. 

The deterministic RetinaNet baseline, when tested on the KITTI dataset, achieved an mAP 

score of 37.11%. This score served as the benchmark for comparing the performance of the 

other methods. The Output Redundancy method, also evaluated on the KITTI dataset, 

achieved a slightly lower mAP of 34.99%. This indicates that while the Output Redundancy 

method may offer some advantages in specific situations, it did not surpass the baseline 

performance in this particular test. 

In contrast, our proposed method, which leverages the YOLOv8 model applied to the 

Udacity Self-driving Car dataset, achieved a notably higher mAP score of 46.00%. This 

represents a significant improvement over both the baseline and the Output Redundancy 

method, demonstrating the effectiveness of our approach in the context of autonomous vehicle 

perception. These results highlight the potential of the YOLOv8 model in enhancing object 

detection accuracy for real-world driving environments. 
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FIGURE 3.11 The convergence of both training and validation losses for the YOLOv8 

algorithm object detector and classification is observed at 100 epochs 

 

FIGURE 3.12 Sample Output (Udacity Car Dataset) 

3.6 Conclusion and discussion 

In this chapter, we have explored the critical role of image data augmentation in enhancing 

multiview object detection using deep neural networks. By applying a variety of augmentation 

techniques, including geometric and photometric transformations, we demonstrated how these 

methods expand dataset diversity, improve model robustness, and address challenges 

associated with multiview object detection, such as varying viewpoints and occlusions. 

The proposed approach effectively integrates augmented datasets with state-of-the-art 

object detection models like Faster R-CNN, SSD, EfficientDet, and CenterNet. The 
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experimental results, conducted using the Open Images Dataset, confirmed that models trained 

with augmented data consistently outperformed those trained without it, achieving higher 

mean average precision (mAP) across various training-test ratios and IoU thresholds. This 

improvement highlights the impact of data augmentation on both the accuracy and reliability 

of detection systems. Additionally, the chapter introduced the application of YOLOv8 in 

autonomous driving scenarios using the Udacity Self-driving Car Dataset. The study 

illustrated how multiview object detection enhances perception in real-world conditions, 

overcoming the limitations of single-view systems. The significant mAP improvements 

achieved by YOLOv8 further underscore the potential of combining advanced neural networks 

with robust training datasets. In summary, this chapter demonstrates that leveraging image 

data augmentation alongside modern deep learning models is a powerful strategy for 

improving multiview object detection. The findings pave the way for further research into 

innovative augmentation methods and their integration with advanced architectures, 

contributing to the development of reliable, high-performing object detection systems in 

diverse domains. 

 

 



 

 

CHAPTER – 4 

Multi-camera Object Detection and Tracking: A YOLOv7 

and DeepSORT-Based Approach 

4.1 Overview 

Multi-camera object tracking is a critical area of research in computer vision, aimed at 

maintaining consistent trajectories of objects as they move across the fields of view of 

multiple cameras. This technology has become increasingly important in applications such as 

video surveillance, autonomous driving, sports analytics, and smart cities [72][73]. By 

leveraging the complementary perspectives provided by multiple cameras, multi-camera 

object tracking systems address key challenges of single-camera tracking, such as occlusions, 

limited fields of view, and re-identification (Re-ID) difficulties [74][75][76].  

In recent years, significant progress has been made in object detection, primarily driven by 

the development of convolutional neural networks. Among these, the YOLO family of models 

has gained widespread popularity due to its efficiency and accuracy in detecting objects in 

real-time. The latest iteration of this model, YOLOv7 [15], introduces several improvements 

in speed and accuracy over its predecessors, making it a promising candidate for multi-camera 

applications. YOLOv7's ability to balance precision and computational efficiency makes it 

well-suited for real-time object detection, even in complex environments with multiple 

overlapping objects and varying scales. 

While YOLOv7 provides a strong foundation for object detection, tracking these objects 

across multiple camera feeds presents additional challenges. Traditional tracking algorithms 

often rely on heuristics or simplistic models, which may fail in dynamic and cluttered 

environments. To address these challenges, DeepSORT (Simple Online and Realtime Tracking 

with a Deep Association Metric) has emerged as a robust tracking algorithm that combines 

deep learning-based feature extraction with the Kalman filter and the Hungarian algorithm for 

data association [29]. DeepSORT's integration of appearance features with motion information 

allows for more accurate and reliable tracking, even when objects move between different 

camera views or are temporarily occluded. 
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This chapter presents a novel approach to multi-camera object detection and tracking by 

integrating YOLOv7 for object detection with DeepSORT for tracking. The proposed system 

aims to leverage the strengths of both YOLOv7 and DeepSORT, addressing the challenges of 

real-time processing, occlusions, and cross-camera tracking. By combining these two state-of-

the-art methods, the system is designed to provide a scalable and efficient solution for 

monitoring large areas with multiple cameras, ensuring that objects are accurately detected and 

tracked across different views [77]. 

This study presents three primary contributions aimed at enhancing object detection and 

tracking in multi-camera surveillance systems. Firstly, it demonstrates the practical utility and 

high performance of the YOLOv7 object detection model when deployed in a multi-camera 

setup. The experiments highlight YOLOv7’s capability to deliver accurate detections while 

operating in real time, which is essential for applications requiring low-latency and high-

throughput processing. The results confirm that YOLOv7 is not only effective in single-

camera environments but also adapts well to the complexities introduced by multi-camera 

systems, such as overlapping fields of view and varying lighting conditions. Secondly, the 

work introduces the integration of YOLOv7 with DeepSORT, a popular multiple object 

tracking algorithm. This integration combines the strengths of both models—YOLOv7's high-

precision object detection and DeepSORT’s ability to track identities over time using a 

combination of appearance descriptors and motion cues. By fusing these features, the tracking 

component becomes more robust against occlusions, re-identification issues, and abrupt object 

movements, leading to improved tracking continuity and accuracy across different camera 

perspectives. Overall, the proposed approach offers a significant improvement in multi-camera 

object detection and tracking [92].  

4.2 Proposed Approach 

The proposed approach for multi-camera object tracking focuses on the seamless integration 

of object detection, feature extraction, and cross-camera association to achieve robust and 

accurate tracking across multiple camera views. This approach addresses challenges such as 

varying camera perspectives, occlusions, and differences in lighting conditions by leveraging 
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advanced detection and tracking algorithms alongside sophisticated data association 

techniques. 

4.2.1 YOLOv7 

YOLOv7 represents a significant advancement in real-time object detection. Building on 

the success of its predecessors, YOLOv7 introduces several architectural innovations and 

optimizations that enhance both the speed and accuracy of object detection tasks, making it 

one of the most efficient models available for various computer vision applications. YOLOv7 

retains the core philosophy of the YOLO family, which is to perform object detection as a 

single-stage process, allowing for rapid inference times. However, YOLOv7 introduces key 

modifications and enhancements that set it apart from earlier versions: 

Extended Efficient Layer Aggregation Networks (E-ELAN): YOLOv7 incorporates an E-

ELAN, which improves feature fusion and the model's capacity to learn complex patterns. E-

ELAN builds on the original ELAN architecture by extending the depth and introducing better 

layer aggregation techniques. This results in a more expressive feature representation, 

particularly beneficial for detecting small objects or objects in cluttered scenes. 

Dynamic anchor boxes: YOLOv7 employs dynamic anchor boxes that adjust during 

training, which helps the model better adapt to the scale and aspect ratio of objects in the 

dataset. This dynamic adjustment enhances the model's ability to detect objects of varying 

sizes and shapes more accurately, particularly in complex scenes where traditional static 

anchor boxes might struggle. 

In summary, YOLOv7 represents a significant advancement in object detection, offering a 

compelling balance of speed and accuracy. Its innovative architecture and training techniques 

make it a powerful tool for various computer vision applications. 

4.2.2 Object tracking using YOLOv7 with DeepSORT  

In multi-camera surveillance systems, accurate object detection and tracking across various 

viewpoints are crucial for comprehensive monitoring. This study leverages YOLOv7, a state-

of-the-art object detection model, in conjunction with DeepSORT, a robust tracking algorithm, 

to address these challenges. The Simple Online and Realtime Tracking (SORT) algorithm is a 
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widely used tracking framework that provides a simple and efficient solution for multi-object 

tracking (MOT) in real-time applications. SORT uses a combination of the Kalman filter for 

motion prediction and the Hungarian algorithm for data association to track objects between 

frames [28]. While highly efficient, SORT relies solely on spatial information (e.g., position 

and motion) for object association, which makes it susceptible to failures in scenarios 

involving occlusions and identity switches. To address these limitations, DeepSORT was 

introduced as an enhancement to SORT. DeepSORT augments SORT with a deep learning-

based appearance feature extraction mechanism, enabling more robust object association 

through a combination of motion and appearance cues. This enhancement significantly 

improves the ability to maintain consistent object identities, even in challenging conditions 

such as partial occlusions. Using a multi-view multi-camera dataset, the research aims to 

demonstrate the effectiveness of this combined approach in achieving high accuracy and 

reliability in detecting and tracking objects. Integrating YOLOv7 and DeepSORT is expected 

to provide a powerful tool for enhancing surveillance capabilities in complex environments. 

Figure 4.1 provides a comprehensive overview of a multi-camera object tracking pipeline, 

specifically employing a DeepSORT-based framework for robust tracking. It can be divided 

into two major stages: Object Detection and Multi-Object Tracking. 

 

FIGURE 4.1 Proposed Model for object detection and tracking based on YOLOv7 and 

DeepSORT 
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We adopt Object detection and tracking using a two-step process: In the first step, we do 

the detection and localization of the object using the YOLOv7 object detector. In the second 

step, using a motion predictor we predict the future motion of the object using its past 

information using DeepSORT.  

First, we manually annotate objects in the video frames using the LabelImgTool in the 

YOLOv7 format. The dataset is subsequently split into training, validation, and testing 

subsets. During preprocessing, the images are resized according to the YOLOv7 

specifications. Following this, we train the YOLOv7 model. The newly trained YOLOv7 

object detector is then used as an input for the DeepSort algorithm. 

 Deep SORT extends the original SORT algorithm.  It enhances the basic SORT by 

integrating a deep learning feature extractor for improved measurement of appearance 

similarity between objects across frames. This results in better handling of long occlusions and 

interactions between objects, which are common challenges in multi-object tracking scenarios. 

Steps involved in the Deep SORT algorithm: 

Step: 1 Detection  

Before tracking can begin, objects in each frame must be detected. Use the YOLOv7 detector 

trained on the Multi-view Multi-class Detection dataset CVLAB – EPFL [41]. Each detection 

is represented as a bounding box 𝑑𝑖=[𝑥, 𝑦, 𝑤, ℎ], where x and y are the coordinates of the 

center of the box, and w and h are the width and height of the box, respectively. 

Step: 2 Feature Extraction 

Appearance Feature Extraction: For each detected bounding box, a deep neural network (such 

as a CNN) is used to extract a feature vector fi. This vector captures the appearance 

information of the object inside the bounding box. The feature vector typically has a fixed 

length and dimensions. 

Step: 3 Motion Prediction 

Kalman Filter: Each tracked object is associated with a Kalman filter [78][79] that predicts its 

next position. The state vector X of the Kalman filter includes the position and velocity of the 

object: 
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 𝑋𝑘 = [𝑥,  𝑦,  𝑤,  ℎ,  𝑥̇, 𝑦̇, 𝑤̇,  ℎ̇]𝑇 (4.1) 

State Prediction: The Kalman filter predicts the state for the next time step k + 1 based on the 

current state Xk and the motion model: 

 𝑋𝑘+1 = 𝐹𝑋𝑘 (4.2) 

where F is the state transition matrix. 

Covariance Prediction: The predicted error covariance matrix P is updated as follows: 

 
𝑃𝑘+1|𝑘 = 𝐹𝑃𝑘𝐹𝑇 + 𝑄 

 

(4.3) 

Where Q is the process noise covariance matrix. 

 

Step: 4 Data Association 

Cost Matrix Calculation: A cost matrix C is calculated based on two metrics: 

• Mahalanobis Distance: Measures the distance between the predicted Kalman state and the 

detected bounding boxes. 

 𝑑𝑚𝑎ℎ𝑎𝑙(𝑖, 𝑗) = (𝑑𝑗  −  𝑦𝑖)
𝑇

 𝑆𝑖
−1(𝑑𝑗 −  𝑦𝑖) (4.4) 

• Cosine Distance: Measures the similarity between appearance feature vectors. The 

smallest cosine distance between the i-th track and j-th detection in appearance space: 

 

 𝑑𝑐𝑜𝑠 = min{1 − 𝑟𝑗
𝑇𝑟𝑘

(𝑖)
|𝑟𝑘

(𝑖)
∈ 𝑅𝑖}   (4.5) 

The combined cost for associating detection j with track i is given by: 

 𝐶𝑖𝑗 = 𝜆𝑑𝑚𝑎ℎ𝑎𝑙(𝑑𝑗 , 𝑇𝑖) + (1 − 𝜆)𝑑𝑐𝑜𝑠(𝑓𝑗 , 𝑇𝑖) (4.6) 

where Ti is the state of track dmahal is the Mahalanobis distance, 𝑑cos is the cosine distance, and 

𝜆 is a weighting parameter. 

Hungarian Algorithm: The Hungarian algorithm is used to solve the assignment problem 

based on the cost matrix C, providing the optimal assignment of detections to tracks. 

Step: 5 Update 

Kalman Filter Update: For each matched detection-track pair, the Kalman filter is updated 

with the new measurement 𝑧: 
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 𝑦𝑘 = 𝑧𝑘 −  𝐻𝑥𝑘|𝑘−1 (4.7) 

 𝑆𝑘 = 𝐻𝑃𝑘|𝑘−1𝐻𝑇 + 𝑅 (4.8) 

 𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑇𝑆𝑘
−1 (4.9) 

 𝑥𝑘|𝑘 = 𝑥𝑘|𝑘−1 + 𝐾𝑘𝑌𝑘 (4.10) 

 𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘|𝑘−1 (4.11) 

where yk is the innovation, H is the measurement matrix, R is the measurement noise 

covariance, Kk is the Kalman gain, and I is the identity matrix. 

Track Management: Tracks are managed based on their states: 

• Confirmed: Tracks that have been successfully matched for a predefined number of 

frames. 

• Tentative: Newly created tracks that are still being confirmed. 

• Deleted: Tracks that haven't been matched for a certain number of frames are deleted. 

Step: 6 Track Initialization 

New Track Creation: For detections that are not matched to any existing track, new 

tracks are initialized. Each new track starts with a state vector x0 and the corresponding 

appearance feature vector fi. 

DeepSORT combines motion (using a Kalman filter) and appearance (using deep learning 

features) for robust tracking. The algorithm leverages data association techniques to handle 

occlusions and re-identification of objects across frames, making it suitable for real-time 

multi-object tracking applications.  

We use the Multi-view Multi-class Detection dataset CVLAB – EPFL [7]. This Dataset 

consists of 23 minutes and 57 seconds of synchronized frames taken at 25fps from 6 different 

calibrated DV cameras. The ground truth contains 242 annotated multi-view non-consecutive 

frames. The frames contain different real situations where pedestrians, cars and buses appear 

and can cause high occlusions among them. A total number of 1297 persons, 3553 cars and 56 
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buses were manually annotated with a bounding box around them. The cameras were 

calibrated using the Tsai calibration model. 

4.3 Experiments and Results 

This section discusses the details of datasets, implementation detail and results. We use the 

CVLAB dataset [19] for Muli-view object detection and tracking. This dataset captures a 

dynamic scene encompassing 22 meters by 22 meters on the EPFL university campus. It 

features 23 minutes and 57 seconds of synchronized video footage, recorded from six 

calibrated DV cameras at 25 frames per second. The cameras are positioned at varying heights, 

including ground level, first floor, and second floor, offering diverse perspectives. The 

recording showcases real-world scenarios with persons, cars, and buses inter-acting, 

potentially causing occlusions. To facilitate analysis, a total of 56 buses,1297 and 3553 cars 

have been manually annotated with bounding boxes across 242 non-consecutive multi-view 

frames. The cameras were calibrated using the Tsai calibration model for accurate spatial 

mapping. The dataset is then divided into 80% for training, 10% for testing, and 10% for 

validation. 

 

4.3.1 Implementation Detail 

All modules were implemented using Python 3.10.12. The deep learning models were built 

using the PyTorch framework (version 2.1.0+cu121). The YOLOv7 network was trained with 

images of 640 × 640 pixels for 300 epochs, with a mini-batch size of 4 images. The weights 

for the YOLOv7 model were initialized using a COCO pre-trained model. This 

implementation was carried out on GOOGLE COLAB PRO. The evaluation of the proposed 

approach consisted of two parts: first, an assessment of YOLOv7, followed by an evaluation 

of Deep-SORT. The YOLOv7 model summary includes 415 layers, 37,207,344 parameters, 

and 37,207,344 gradients. The object categories used were car, person, and bus.  

4.3.2 Results 

Figure 4.2 illustrates sample image annotations created using the LabelImg tool, a widely used 

graphical annotation software designed for generating datasets in object detection tasks. The 
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annotations visually highlight the objects of interest within the image, enclosed by bounding 

boxes corresponding to their labels. 

Figure 4.3 presents the bounding box coordinates generated by the LabelImg tool in the 

YOLO format. This format represents annotations in a compact and efficient way, detailing the 

class label, along with the normalized coordinates of the bounding box (center coordinates, 

width, and height) relative to the image dimensions. These coordinates are essential for 

training object detection models using the YOLO algorithm. 

 

 

 

FIGURE 4.2 Sample annotated image in YOLOv7 format using labelImg tool 
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FIGURE 4.3 Sample annotations of the image shown in the previous figure  

Table 4.1 provides a detailed performance assessment of the fine-tuned YOLOv7 model on 

the EPFL Multi-View Multi-Camera Dataset. The first row captures the overall results for all 

object categories, while subsequent rows break down each class's performance. The table 

outlines critical metrics, including image size, FLOPs (Floating Point Operations per second), 

Precision, Recall, and mAP scores at 0.50 and 0.75 thresholds, offering a comprehensive look 

at the model’s capabilities. Additionally, Table 4.2 evaluates the performance of the fine-tuned 

YOLOv7 in combination with DeepSORT, highlighting comparisons with other methods and 

datasets, offering insights into relative effectiveness across different approaches. 

TABLE 4.1 Performance evaluation of Fine-tuned YOLOv7 on EPFL Multi-View Multi-

Camera Dataset 

Class Size FLOPs Precision Recall mAP@0.5 mAP@0.75  

All 640 4.38G 0.923 0.948 0.955 0.761 

Car 640 4.38G 0.979 0.997 0.985 0.855 

Person 640 4.38G 0.788 0.973 0.985 0.733 

Bus 640 4.38G 0.997 0.874 0.894 0.694 

 

mailto:mAP@0.75
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TABLE 4.2 Performance evaluation of Fine-tuned YOLOv7 + DeepSORT on EPFL 

Multi-View Multi-Camera Dataset 

 Dataset MOTA MOTP 

SORT [32] MOT16 [31] 59.8% 79.6% 

Faster RCNN + 

Deep SORT [33] 
MOT16 [31] 61.4% 79.1% 

Conditional 

Random Fields 

[34] 

EPFL Multi-View Multi-

Camera Detection  

Dataset 

- 80% 

Proposed 

YOLOv7 + 

DeepSORT 

EPFL Multi-View Multi-

Camera Detection  

Dataset 

63.2% 83.0% 

 

 

FIGURE 4.4 The convergence of both training and validation losses for the YOLOv7 

algorithm object detector and classification is observed at 300 epochs, as demonstrated 

on the Multi-view multi-camera dataset. 

Figure 4.4 shows the convergence of both training and validation losses, as well as 

performance metrics for the YOLOv7 object detection algorithm, evaluated over 300 epochs 
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using the EPFL Multi-View Multi-Camera Dataset with three object classes: car, bus, and 

person. In the top row, the training loss plots are shown and the bottom row, the validation loss 

and metrics follow a similar trend: 

• Box Loss: Measures how well the model predicts the bounding box locations for objects. 

The loss steadily decreases, indicating improving box predictions as training progresses. 

• Objectness Loss: This refers to the confidence score for detecting any object. It also 

reduces smoothly, suggesting that the model becomes better at discerning object presence. 

• Classification Loss: Represents the error in classifying detected objects into categories 

(car, bus, person). The steep decline shows rapid convergence early on. 

• Precision and Recall: Both metrics rise toward high values near 1, indicating strong model 

performance in detecting and correctly classifying objects over the epochs. 

• Validation Box, Objectness, and Classification Loss: These losses also converge, showing 

the model generalizes well on the validation set. 

• mAP (Mean Average Precision) at 0.5 and 0.5:0.95: These are key metrics that combine 

precision and recall across multiple IoU (Intersection over Union) thresholds. The model 

maintains strong mAP scores above 0.7 and approaches 1 for mAP@0.5, indicating high 

accuracy across different IoU thresholds. 
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FIGURE 4.5 (a) illustrates the precision (P) plotted against confidence (C) (b) 

demonstrates the recall plotted against confidence. (c) Correspond to the mean average 

precision, which is calculated by comparing the ground truth bounding boxes with the 

detected bounding boxes. (d) highlights the F1 score, reaching 93% at a confidence level 

of 0.449. This score emphasizes the balance between precision and recall, as observed in 

the Multi-view multi-camera dataset 

Overall, the plots indicate successful training and validation with the losses converging 

and the model maintaining high precision, recall, and mAP across 300 epochs. Figure 4.5 

evaluates the YOLOv7 object detection model on the EPFL Multi-View Multi-Camera Dataset 

with classes: car, bus, and person. It shows strong performance for objects, with high 

precision, recall, and F1 scores. Precision vs. confidence and recall vs. confidence plots 

indicate the model is highly accurate at detecting objects. The combined F1 score of 0.93 at a 

confidence of 0.449 suggests the model is well-balanced for most object categories. 
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(a) 

 

(b) 

FIGURE 4.6 (a) and (b) Sample output of object tracking using DeepSORT 

 

Figure 4.6 provides a clear depiction of the integration between the DeepSORT algorithm 

and the fine-tuned YOLOv7 object detector, showcasing their combined effectiveness in object 

tracking. The sample frames are sourced from the EPFL Multi-View Multi-Camera Dataset, a 

benchmark designed to test the capabilities of tracking algorithms in complex scenarios. These 

frames illustrate the model's ability to accurately detect and track multiple objects 

simultaneously across various camera views. 

The results demonstrate the strength of the combined YOLOv7 and DeepSORT approach 

in addressing challenges associated with multi-object tracking in dynamic, multi-camera 
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environments. By leveraging YOLOv7's advanced object detection capabilities, fine-tuned for 

optimal performance, and DeepSORT's efficient tracking methodology, the system ensures 

continuity and accuracy in identifying and following objects. This integration not only 

enhances detection precision but also maintains object identities across frames, even in 

challenging multi-view settings. 

This figure underscores the robustness and adaptability of YOLOv7 when paired with 

DeepSORT, making it well-suited for applications in surveillance, autonomous systems, and 

other scenarios requiring reliable multi-object detection and tracking. The successful 

performance depicted in the sample frames highlights the practical potential of this combined 

approach for real-world implementation in complex visual environments. 

4.4 Conclusion and Discussion 

In this chapter, we presented a comprehensive approach to multi-camera object detection and 

tracking by integrating the YOLOv7 object detection framework with the DeepSORT tracking 

algorithm. The proposed methodology leverages YOLOv7's advancements in real-time 

detection, such as dynamic anchor boxes and Extended Efficient Layer Aggregation Networks 

(E-ELAN), to achieve high precision and recall. Simultaneously, the integration with 

DeepSORT enhances object tracking performance by combining motion prediction with 

appearance-based re-identification, addressing challenges like occlusions and identity 

switches. Using the CVLAB-EPFL multi-view multi-camera dataset, our experiments 

demonstrated the system's robustness in handling dynamic and occlusion-heavy environments. 

Quantitative evaluations highlighted the superior performance of the YOLOv7 + DeepSORT 

pipeline, achieving significant improvements in metrics like MOTA, MOTP, and average 

precision (mAP). Visualizations of training convergence, precision-recall trade-offs, and 

tracking outputs further validated the efficacy of the proposed approach. The results illustrate 

the scalability and effectiveness of the system for real-world applications in surveillance, 

autonomous driving, and other domains requiring continuous multi-camera monitoring. While 

the approach successfully addresses many challenges inherent in multi-camera object 

detection and tracking, opportunities for further research remain, such as extending the system 

to support additional object classes or enhancing its adaptability to diverse environmental 
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conditions. In summary, this chapter contributes a robust, scalable solution to the field of 

multi-camera object tracking, emphasizing the synergistic benefits of combining state-of-the-

art detection and tracking methodologies. 
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CHAPTER – 5 

Multi-Camera Object Tracking using YOLO and 

ByteTrack  

5.1 Overview 

Multi-camera object tracking is an essential area of research within computer vision, enabling 

the accurate identification and tracking of objects across multiple video feeds. This technology 

has become increasingly significant due to its applications in various domains, such as 

surveillance systems, autonomous vehicles, crowd monitoring, and smart city solutions. By 

utilizing multiple camera perspectives, the technology addresses limitations inherent to single-

camera systems, such as occlusions and limited fields of view, and provides a more 

comprehensive understanding of dynamic and complex environments [90][91]. 

The integration of data from multiple cameras allows for seamless object tracking, 

particularly for moving entities like pedestrians and vehicles. This capability enhances 

situational awareness, safety, and security by enabling the tracking of objects across diverse 

viewpoints and locations. In scenarios like public spaces, busy intersections, or crowded 

events, where monitoring from a single perspective is insufficient, multi-camera tracking 

proves to be a robust solution. 

However, despite advancements in object detection and tracking, challenges such as object 

occlusions, re-identification across camera feeds, and varying environmental conditions, 

including lighting and background clutter, persist. These challenges underline the need for 

developing advanced algorithms that can ensure accuracy, reliability, and real-time 

performance in multi-camera systems. 

This chapter explores the techniques and methodologies employed in multi-camera object 

tracking, with a focus on recent advancements such as YOLOv8 [30] and ByteTrack [24]. The 

discussion includes their capabilities to address persistent challenges and their effectiveness in 

real-world applications. By testing these algorithms on multi-camera datasets, this chapter 

aims to provide insights into improving tracking accuracy and reliability. The findings will 
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contribute to advancing the field and unlocking the potential for more efficient and practical 

applications in intelligent surveillance, traffic management, and other critical areas. 

5.2 Proposed Approach 

The proposed approach aims to develop a robust and efficient multi-camera object tracking 

system by leveraging state-of-the-art object detection and tracking algorithms. The framework 

integrates YOLOv8, a cutting-edge object detection model, with ByteTrack, an advanced 

tracking algorithm, to address the challenges of multi-camera tracking, such as object 

occlusions, re-identification, and diverse environmental conditions. 

5.2.1 YOLOv8 and ByteTrack Overview 

The proposed approach for multi-camera object tracking focuses on seamlessly 

integrating object detection, feature extraction, and cross-camera association to achieve robust 

and accurate tracking across multiple camera views. This approach addresses challenges such 

as varying camera perspectives, occlusions, and differences in lighting conditions by 

leveraging advanced detection and tracking algorithms alongside sophisticated data 

association techniques. 

YOLOv8, an advanced real-time object detection algorithm, builds upon its predecessors 

with improvements in detection speed and accuracy. Its ability to rapidly process video frames 

makes it ideal for multi-camera tracking scenarios. In this work, YOLOv8 serves as the 

primary object detector, providing bounding box predictions for pedestrians across multiple 

camera feeds. 

ByteTrack, a multi-object tracking algorithm, is employed to link the detected objects 

across consecutive frames. It uses a two-stage association process—first associating high-

confidence detections and later linking the remaining detections based on their Intersection 

over Union (IoU) score. The combination of YOLOv8's precise detection capabilities with 

ByteTrack’s robust tracking ensures the system can maintain accurate tracking across frames 

and cameras, even in challenging conditions. 
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Figure 5.1 illustrates the overall workflow of our tracking system, which includes input 

handling, detection processing, track prediction using Kalman filtering, association of 

detections with tracks, and track management. 

 

FIGURE 5.1 Proposed YOLOv8 and ByteTrack for Multi-Camera Object Tracking 

We implemented a multithreaded tracking system to improve the efficiency of processing 

multiple video streams. Each thread handles one video stream, ensuring the system can 

simultaneously process multiple feeds without bottlenecks. Using the threading module in 

Python, this implementation significantly enhances the tracking system's performance, 

especially in scenarios with multiple surveillance cameras. 

The system receives video inputs from multiple cameras (denoted as 𝑉1, 𝑉2, … , 𝑉𝑛). Each 

video stream is processed in parallel using multithreading, where each thread (Thread 1, 

Thread 2, …, Thread n) handles a separate video input. Important steps in this proposed 

method are explained below: 

1. YOLOv8 Object Detector 

• The annotations of the input dataset OPEN Image Person Dataset are converted into a 

format compatible with YOLOv8 using a tool Roboflow. This conversion prepares the data 

for training the YOLOv8 detector. 
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• The dataset is partitioned into training, testing, and validation sets, also managed using 

Roboflow [53], to ensure proper model evaluation and training. 

• Once the dataset is prepared, YOLOv8 is trained to detect objects, specifically pedestrians 

in this setup, within the video frames. 

 

2. Tracker Prediction: 

After object detection, the system enters the tracking phase: 

• For each frame of the video (denoted as 𝑓𝑘), the Kalman filter predicts the new position of 

each object (track) based on its previous movement. 

• The YOLOv8 detector provides detection boxes and corresponding confidence scores for 

each object. These scores are used to filter detections into two categories: high-confidence 

and low-confidence detections. 

 

3. Association: 

• First Association: The system performs the first association of detected objects and tracks 

by matching high-confidence detections with existing tracks. This ensures that the most 

confident detections are linked to their corresponding object tracks. 

• Second Association: The remaining unmatched detections (typically low-scoring) are then 

matched with tracks using a second association. This ensures that even uncertain detections 

are considered, minimizing track loss. 

 

4. Track Pruning 

• After both association steps, the system prunes or removes tracks that are not matched with 

any detections. This helps eliminate false positives or tracks that are no longer valid. 

For each video feed (Video 1, Video 2, …, Video n), the system outputs Object Bounding 

Boxes and Track IDs for the detected objects. The bounding boxes specify each object's 

position, while the Track IDs are unique identifiers assigned to each object to maintain 

consistency across frames and cameras. 
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5.2.2 Multi-threaded Tracking 

We implemented a multithreaded tracking system to improve the efficiency of processing 

multiple video streams. Each thread handles one video stream, ensuring the system can 

simultaneously process multiple feeds without bottlenecks. Using the threading module in 

Python, this implementation significantly enhances the tracking system's performance, 

especially in scenarios with multiple surveillance cameras. 

5.2.3 Dataset Description and Preprocessing 

The datasets used in this study include the Open Images Dataset v6 [36], the Multi-

camera Pedestrian Dataset by EPFL [42], and the Real-time Multi-camera Person Dataset. 

Each dataset presents unique characteristics that aid in evaluating the performance of object 

detection and tracking algorithms, specifically YOLOv8 and ByteTrack. 

The Open Images Dataset v6 is a widely used dataset for object detection tasks, focusing 

on the category of "Person" in this study. It contains a total of 1,000 images, which are split 

into 70% for training, 20% for validation, and 10% for testing. A total of 4,036 annotations are 

available for the "Person" category across the dataset. To adapt the dataset for use with 

YOLOv8, the annotations were converted to the YOLOv8 format using Roboflow [53]. This 

tool also facilitated the division of images and annotations into the appropriate sets for 

training, validation, and testing. 

The Multi-camera Pedestrian Dataset by EPFL is a comprehensive dataset comprising 

two sequences: the Laboratory Sequence [42] and the Passageway Sequence [42], both of 

which feature overlapping camera views. In the Laboratory Sequence, four cameras are 

strategically positioned about 2 meters above the ground, capturing video footage of persons 

entering in sequence and moving around a laboratory environment. Each recording lasts for 

approximately 2.5 minutes. The video is recorded at a frame rate of 25 frames per second (fps) 

and encoded using the MPEG-4 codec, providing high-quality data for pedestrian detection 

and tracking. The Passageway Sequence presents a more challenging scenario, as it was filmed 

in an underground passageway leading to a train station, a location characterized by poor 

lighting. This sequence was captured using four DV cameras, each recording at 25 fps, with 
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the footage encoded using the Indeo 5 codec. The low-light conditions of the passageway 

make this sequence particularly difficult for tracking algorithms, as it adds complexity to the 

task of maintaining accurate object detection.  

Lastly, the Real-time Multi-camera Person Dataset was recorded in a laboratory setting 

using two cameras positioned in non-overlapping views. This dataset features individuals 

entering in sequence and walking around the room for one minute. One camera focuses on the 

main entrance of the premises, while the other covers a laboratory passageway that is subject 

to poor lighting. The non-overlapping nature of the camera views provides an additional 

challenge for object-tracking systems, as individuals must be tracked across distinct areas 

without the benefit of continuous visual coverage. 

The datasets represent real-world challenges such as occlusions, and varying lighting, 

which are critical for evaluating the robustness of tracking algorithms. 

5.2.4 Proposed Algorithm for Multi-camera Object Tracking 

Figure 5.2 shows an algorithm represented as a flowchart, detailing the process for multi-

camera object tracking using YOLOv8 and ByteTrack. 

Multiple video streams from different cameras are fed into the system as input. YOLOv8 

processes each video frame, detecting objects (likely pedestrians) and generating bounding 

boxes around the detected objects. It also provides confidence scores for each detection. The 

system applies a Kalman Filter [46] to predict the new positions of the detected objects 

(tracks) in subsequent frames based on their previous positions. Detected objects (bounding 

boxes) are associated with their corresponding predicted tracks. This is done by matching the 

current detection with the expected location from the Kalman Filter. Two association stages 

seem to occur: 

• First Association Stage: High-confidence detections are linked to existing tracks. 

• Second Association Stage: Remaining detections (likely those with lower confidence 

scores) are matched to tracks using a secondary matching mechanism, possibly based on 

Intersection over Union (IoU) [24]. 
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FIGURE 5.2 Proposed Algorithm for Multi-Camera Object Tracking using YOLOv8 and 

ByteTrack 

Algorithm: Pseudo-code of YOLOv8 and ByteTrack-based Algorithm for Multi-Camera Object 

Tracking 

Input: 

• Object Detector (YOLOv8) with detection threshold θ 

• Video sequence 𝑽𝟏,𝑽𝟐, . . . ,𝑽𝒏 

• Number of input videos n 
 
Output: Tracks  𝑻𝟏,𝑻𝟐, . . . ,𝑻𝒏for each video 

1 tracker_run(𝐷𝑒𝑡𝑉8, 𝜃, 𝑉) 

2 
 

Initialize Track 𝑇 = ∅ 

3 
 

For each frame fi in the video V: 

4   Obtain detection boxes and scores using the YOLOv8 model:      

6    𝐷𝑘 = 𝐷𝑒𝑡𝑉8(𝑓𝑖) 

7   Initialize two sets: 𝐷𝐻 = ∅,𝐷𝐿 = ∅ 

8   For each detection 𝒅 in 𝑫𝑲: 

9      If 𝑑. 𝑠𝑐𝑜𝑟𝑒 > 𝜃, add 𝑑 to 𝐷𝐻 

10      Otherwise, add 𝑑 to 𝐷𝐿 

11  Update Tracks: 

12  For each track 𝑡 in 𝑇, predict its new position using a Kalman Filter: 

13  𝑡 = Kalman𝐹𝑖𝑙𝑡𝑒𝑟(𝑡)  

14        First Association: 

15  Associate objects in 𝑇 with detections in 𝐷𝐻, using Re-ID feature distances. 

16  Track Unmatched Detections: 

17  𝐷𝑟𝑒𝑚𝑎𝑖𝑛 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑜𝑏𝑗𝑒𝑐𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟𝑚 𝐷𝐻 

18  𝑇𝑟𝑒𝑚𝑎𝑖𝑛 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑜𝑏𝑗𝑒𝑐𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟𝑚 𝑇 

19  Second Association: 

20  Match the remaining tracks in 𝑇𝑟𝑒𝑚𝑎𝑖𝑛  with detections in 𝐷𝐿, using IoU similarity. 

21  𝑇𝑟𝑒−𝑟𝑒𝑚𝑎𝑖𝑛 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑜𝑏𝑗𝑒𝑐𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟𝑚 𝑇𝑟𝑒𝑚𝑎𝑖𝑛   

22  Update Unmatched Tracks: 

23  Remove unmatched tracks from the set:T= 𝑇/𝑇𝑟𝑒−𝑟𝑒𝑚𝑎𝑖𝑛  

24  Return the updated tracks 𝑽 . 

25 tracker-thread-1 → tracker_run(Det, Ɵ, V1) 

26 tracker-thread-2 → tracker_run(Det, Ɵ, V2) 
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The system updates the status of existing tracks, such as confirming or terminating a 

track if it can no longer find a match in the current frame. Each video stream is processed in a 

separate thread to ensure parallel execution, improving processing efficiency. Figure 5.2 

provides an overview of the YOLOv8 and ByteTrack pipeline for tracking objects across 

multiple camera feeds, leveraging Kalman Filters for motion prediction and a multi-stage 

matching process to maintain track consistency across frames. 

5.3 Results 

The performance of the YOLOv8 and ByteTrack system was evaluated using several metrics, 

including Precision, Recall, mean Average Precision (mAP), Multi-Object Tracking Accuracy 

(MOTA), and Multi-Object Tracking Precision. These metrics provide insights into the 

system's detection and tracking capabilities, with MOTA and MOTP measuring the overall 

tracking quality [20]. Figures 5.3 shows the image with a bounding box and annotations of 

sample image taken from ROBOFLOW. Figure 5.4 shows the object class and bounding box 

coordinates shown in figure 5.4. 

 

FIGURE 5.3 Sample annotated image taken from Roboflow 
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FIGURE 5.4 Annotations for person in YOLOv8 format 

 

All modules were developed using Python version 3.10.12. The deep learning models 

were implemented with the PyTorch framework (torch-2.2.1, cu121) and executed on a Tesla 

T4 GPU, which has 15102 MiB of memory. Both YOLOv8 and ByteTrack were implemented 

in the Google Colab PRO environment. YOLOv8 was specifically trained on the "Person" 

category from the Open Image Dataset, with initial weights derived from the COCO pre-

trained model. The YOLOv8 model consists of 225 layers, 3,011,238 parameters, 3,011,222 

gradients, and performs 8.2 GFLOPs. For ByteTrack, a high association threshold of 0.5 was 

used for the initial frame-to-frame link, while a lower threshold of 0.2 was applied for 

subsequent associations. 

 

TABLE 5.1 Performance evaluation of Fine-tuned YOLOv8 on Open Image Dataset  

Size GFLOPs74 Precision Recall mAP@0.5 

640 8.1 0.64 0.521 0.55 

 

mailto:mAP@0.5
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TABLE 5.2 Performance evaluation ByteTrack on Multi-camera Pedestrian Dataset and 

Real-time Multi-camera person dataset with non-overlapping camera view 

Method Dataset MOTA MOTP 

K-Shortest Paths [45] 

EPFL Passageway Sequence 68% 82% 

EPFL Laboratory Sequence 70% 83% 

 POM [42] 
EPFL Passageway Sequence 68% 70% 

EPFL Laboratory Sequence 72% 78% 

Proposed YOLOv8 

+ ByteTrack 

EPFL Passageway Sequence 70.25% 83.3% 

EPFL Laboratory Sequence 72.14% 84.6% 

Real-time Multi-camera person 

dataset with non-overlapping camera 

view 

75.60% 86.8% 

 

Table 5.1 displays the results of fine-tuning YOLOv8 on the Open Image Dataset, 

providing detailed performance metrics for the model after optimization. In Table 5.2, a 

comparison is made between the proposed YOLOv8 and ByteTrack system and other object 

tracking methods, including K-Shortest Paths and Probability Occupancy Map (POM). This 

comparison was conducted using the EPFL Passageway and Laboratory sequences, which 

present challenging tracking scenarios. The proposed system outperformed the other methods 

in terms of tracking accuracy, particularly in environments with difficult conditions such as 

low lighting and occlusions, demonstrating its ability to maintain object tracking even in 

complex settings. 

Additionally, the system was evaluated on a real-time multi-camera person dataset, which 

features non-overlapping camera views. In this evaluation, the system achieved a Multi-Object 

Tracking Accuracy (MOTA) score of 75.60% and a Multi-Object Tracking Precision (MOTP) 

score of 86.8%. These results underscore the robustness and effectiveness of the YOLOv8 and 

ByteTrack integration, highlighting its ability to handle complex multi-object tracking tasks 
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across multiple camera perspectives. The high MOTA score indicates the system’s capability 

to accurately track objects across various frames with minimal errors, while the MOTP score 

reflects the precision of the bounding boxes, ensuring accurate object localization even in 

challenging tracking conditions. Overall, these results validate the proposed system's 

effectiveness in real-world applications, particularly for multi-camera tracking in dynamic 

environments. 

 

FIGURE 5.5 (a) the precision (P) plotted against confidence (C)  (b) The recall plotted 

against confidence. (c) the mean average precision, which is calculated by comparing the 

ground truth bounding boxes with the detected bounding boxes. Additionally (d) the 

IDF1 score 

 

The figure presents four evaluation plots for object detection on the "person" class: (a) 

illustrates how precision improves with confidence, reaching nearly 1.0 at higher confidence 

levels. (b) depicts recall starting at 0.83 and declining as confidence increases. (c) 

demonstrates a trade-off between precision and recall, with the mAP@0.5 for all classes at 

0.550. Finally, (d) shows the F1 score peaking at 0.58 around a confidence value of 0.4 before 

dropping at higher confidence levels. Together, these plots highlight the trade-offs between 

precision, recall, and confidence for the detection model. 
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FIGURE 5.6 Sample video file and annotations 

The image above displays a sample frame along with its corresponding annotation file for 

tracked objects. The video frame is saved as video_name_frame_number.jpg, while the 

annotation file is named video_name_frame_number.txt. For Example, the above file names 

are 4p_c0_168.jpg and 4p_c0_168.txt. Each line in the annotation file describes a single object 

instance, where the first value indicates the class, the next four values represent the object's 

bounding box coordinates, and the sixth value specifies the object's identity number. 

Table 5.3 Data Format for Evaluation of Object Tracking  

Position Name 

1 Class 

2 Bounding box left 

3 Bounding box top 

4 Bounding box width 

5 Bounding box height 

6 Identity number 
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FIGURE 5.7 Sample video frames for the passageway sequence 

 

FIGURE 5.8 Sample video frames for the laboratory sequence 
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FIGURE 5.9 Sample video of multi-camera person dataset with non-overlapping camera 

view – Laboratory Sequence 

 

 

FIGURE 5.10 Sample output of multi-camera person dataset with non-overlapping 

camera view – Main Entry 

Figure 5.7 presents the sample output of video frames from the passageway sequence 

captured by two cameras. Figure 5.8 displays sample frames from the laboratory sequence. 

Figure 5.9 illustrates the sample output of the multi-camera person dataset featuring non-

overlapping camera views in the laboratory sequence. Figure 5.10 showcases the sample 

output of the multi-camera person dataset with non-overlapping camera views in the main 

entry sequence. 

5.4 Conclusion and Discussion 

In this work, we presented an approach to multi-camera object tracking by integrating 

YOLOv8 and ByteTrack. YOLOv8 served as the primary object detector, offering high 

detection accuracy and speed, while ByteTrack complemented it with robust tracking 



Chapter: 5 Multi-Camera Object Tracking using YOLO and ByteTrack 

80 
 

capabilities across frames and camera views. By leveraging a multithreaded implementation, 

our system efficiently processed video streams from multiple cameras, ensuring scalability and 

real-time performance. 

The evaluation using diverse datasets, including the EPFL multi-camera pedestrian 

dataset and a real-time multi-camera person dataset, demonstrated the effectiveness of the 

proposed method. The system achieved superior tracking accuracy and precision in 

challenging scenarios such as occlusions, low-light environments, and non-overlapping 

camera views. Specifically, our approach outperformed existing methods like K-Shortest Paths 

and Probability Occupancy Maps, achieving notable improvements in Multi-Object Tracking 

Accuracy (MOTA) and Precision (MOTP). 

These results underline the potential of combining advanced object detection algorithms 

like YOLOv8 with robust tracking mechanisms such as ByteTrack for real-world applications. 

This approach holds promise for various domains, including surveillance, autonomous 

systems, and traffic monitoring. Future work may explore enhancing cross-camera re-

identification and adapting the system for more diverse and complex environments. 
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CHAPTER – 6 

Conclusion and Future Scope 

6.1 Conclusion 

This thesis has addressed the challenges and advancements in multi-view object detection 

and tracking, focusing on integrating cutting-edge deep learning models and tracking algorithms 

to develop robust solutions for real-world applications. The research combined state-of-the-art 

object detection models such as YOLOv7, and YOLOv8, and tracking algorithms like 

DeepSORT and ByteTrack to handle complex scenarios in multi-view environments, delivering 

significant improvements in performance and adaptability. 

The initial part of this study highlighted the critical role of image data augmentation in 

enhancing the performance of deep learning models for object detection tasks. Various 

augmentation techniques, such as altering object perspectives and adding noise, were applied to 

diversify the training data, leading to substantial improvements in mean Average Precision 

(mAP) across several detection models, including Centernet, EfficientDet, SSD, and 

FasterRCNN. These results, tested on the Open Image Dataset v6, demonstrate that data 

augmentation can help models generalize better to different scenes and lighting conditions, 

making the models more adaptable to real-world conditions. The importance of data 

augmentation in improving model robustness cannot be overstated, especially in situations where 

acquiring diverse and labeled data is challenging. 

This research also extended its exploration of object detection to autonomous driving 

applications, where the YOLOv8 model was trained on the Udacity Self-Driving Car Dataset. 

The study found that YOLOv8, combined with multi-view detection techniques, performs 

exceptionally well in recognizing objects in various driving conditions, including complex 

lighting and weather scenarios. Accurate and timely detection of objects such as pedestrians, 

vehicles, and road signs are paramount for the development of reliable autonomous vehicle 

systems. By training models to detect objects from different angles and under varying conditions, 

this research has contributed to improving the performance and safety of autonomous driving 

technology. These findings demonstrate that deep learning models like YOLOv8 can be 
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instrumental in pushing forward the capabilities of autonomous systems, particularly in real-

world applications where detection accuracy is vital for decision-making processes. 

In addition to object detection, this thesis explored the potential of multi-camera tracking 

systems by integrating DeepSORT and ByteTrack with YOLOv7 and YOLOv8 respectively. 

These systems were tested in dynamic environments with overlapping and non-overlapping 

camera views, such as in surveillance and monitoring systems. One of the main challenges 

addressed in this study was the accurate tracking of objects across multiple camera feeds, 

especially under challenging conditions like occlusions and poor lighting. The experiments 

demonstrated that combining powerful object detectors like YOLOv7 and YOLOv8 with robust 

tracking algorithms like DeepSORT and ByteTrack allows for consistent and accurate tracking of 

objects, even in environments with complex interactions. This research showed that such systems 

are highly adaptable and suitable for a range of applications, from public safety surveillance to 

smart city monitoring. 

Another important finding was the models’ ability to perform well under challenging real-

world conditions, such as low-light environments and occlusions adaptability of these methods. 

The research revealed that even in difficult scenarios, the proposed object detection and tracking 

systems maintained high levels of accuracy and reliability, highlighting their practical 

applicability in real-world environments, such as traffic monitoring and security surveillance. 

This makes the proposed approach particularly relevant for applications that require constant 

monitoring of public spaces, transportation hubs, or sensitive areas. 

Overall, this thesis contributes to the broader field of computer vision by providing valuable 

insights into the advantages of multi-view object detection and tracking, particularly through the 

use of fine-tuned deep learning models and advanced tracking algorithms. The study has 

demonstrated how the combination of robust object detection with multi-view tracking 

techniques can significantly enhance the effectiveness of systems used in surveillance, 

autonomous driving, and other areas requiring high levels of accuracy in object detection and 

tracking.  

However, addressing the identified limitations will be crucial for further improving system 

performance. Future research should focus on enhancing detection in crowded environments, 
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improving tracking consistency across multiple camera views, optimizing computational 

efficiency for real-time applications, and integrating multimodal sensor data (e.g., LiDAR, 

thermal imaging) to improve robustness under challenging conditions. Despite these challenges, 

the proposed methodologies provide a foundation for future object detection and tracking 

advancements, paving the way for more efficient, scalable, and adaptable vision-based systems 

for real-world applications. 

6.2 Future Scope 

Looking forward, there are several promising directions for future research. One key area 

involves further optimization of these models for real-time performance. Techniques like model 

pruning and quantization could enhance the computational efficiency of these models without 

sacrificing accuracy. Another area of future exploration includes handling even more complex 

environments, such as those with heavy occlusions, motion blur, or cluttered backgrounds, which 

will require the development of new algorithms or the refinement of existing ones. Additionally, 

integrating multimodal data—such as infrared, LiDAR, or radar—can enhance the detection and 

tracking capabilities of these models, particularly in challenging conditions like fog, rain, or low 

visibility. 

Furthermore, long-term tracking and re-identification across large time gaps or between 

different camera views remains an open challenge. Future work could improve the consistency 

and accuracy of tracking objects that temporarily leave the field of view and reappear later or in 

different cameras. This would be crucial for applications like smart city surveillance, where the 

ability to track objects over extended periods and across multiple locations is essential. 

In summary, this thesis comprehensively examines multi-view object detection and tracking, 

highlighting the potential of deep learning models and advanced tracking algorithms in real-

world applications. The findings pave the way for further innovations in the field, ensuring that 

future systems will be more reliable, efficient, and capable of addressing increasingly complex 

challenges in object detection and tracking. 
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